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Foreword

As the head of sales and service for Carl Zeiss Microscopy, I am 

excited to introduce this book on the power of AI for image 

analysis. Our teams work tirelessly with our customers to provide 

the tools and support needed to achieve their goals, and AI 

technology is a game-changer that can supercharge their success.

AI and Machine Learning are transforming the field of image 

analysis, and this book provides a comprehensive guide to these 

powerful new technologies. It covers the basics of AI and provides 

practical examples of how to apply these concepts to microscopy 

image analysis.

At ZEISS, we believe that AI can make our customers’ lives easier by 

reducing manual time overhead in their workflows, both in terms of 

microscope hardware and software. We are proud to be pioneers in 

this exciting field and hope that our book will inspire and empower 

others in the microscopy community to take advantage of the 

incredible benefits of AI

Martin Fischer

Head of Global Sales & Service

ZEISS Research Microscopy Solutions

As the CEO of Carl Zeiss Microscopy, a global leader in microscopy 

and imaging solutions, it gives me great pleasure to introduce this 

book on AI for image analysis. We at ZEISS believe that technology 

can be a powerful tool for driving innovation and advancing 

science and we are proud to be leading the charge in the field of 

microscopy and imaging solutions.

This book is not just a collection of technical information: it is 

a source of inspiration for anyone who wants to unlock the full 

potential of AI in microscopy. Using Machine Learning and Deep 

Learning, we can now achieve results that were once thought 

impossible. The examples and case studies included in this book are 

a testament to the transformative power of AI in image analysis. 

At ZEISS, we are committed to pushing the boundaries of what 

is possible and we are proud to be at the forefront of this 

exciting new field of AI-powered image analysis. Whether you 

are a researcher, clinician, or engineer, I believe this book will 

be a valuable resource for unlocking the full potential of AI in 

microscopy for you.

Dr. Michael Albiez

Member of the Management Board IQR & Head of SBU RMSZEISS 

President & CEO Carl Zeiss Microscopy GmbH

“AI and Machine Learning are 
transforming the field of image analysis, 
and this book provides a comprehensive 
guide to these powerful new 
technologies.”

“We at ZEISS believe that technology 
can be a powerful tool for driving 
innovation and advancing science 
and we are proud to be leading 
the charge in the field of 
microscopy and imaging solutions.”
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The chapters in this eBook employ the new product names for arivis products, which have been rebranded by ZEISS following the 

acquisition. Specifically, arivis Vision4D is now known as ZEISS arivis Pro, arivis VisionHub as ZEISS arivis Hub, APEER cloud platform as 

ZEISS arivis Cloud, and the AI tools from APEER as arivis AI toolkit. It’s worth noting that ZEISS offers all its data-agnostic image analysis 

tools under the ZEISS arivis product category. No matter the source, size or complexity of the image, ZEISS arivis family of integrated 

software products will help take your analysis results to new heights.

Cover image: The cover picture displays a cross-sectional view of an intestinal gut organoid captured at 20X magnification on ZEISS 

Celldiscoverer 7 and segmented using ZEISS arivis Pro image analysis software. The image highlights cell layer nuclei in red and luminal 

nuclei in yellow. For more information, please see Chapter 5, section 3.
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What is AI and why does it 
matter?
Why you need AI in your research

In 1955, John McCarthy, Assistant Professor of Mathematics at 

Dartmouth College, coined the term ‘Artificial Intelligence’ to 

represent the field of thinking machines, including cybernetics, 

automata theory, and complex information processing [1]. Today, 

Artificial Intelligence (AI) refers to the collection of techniques that 

mimic human intelligence in performing tasks.

AI has become ubiquitous in the 2020s, helping us in many aspects 

of our lives, from acting as personal assistants and delivering 

customized information on social media, to driving automobiles 

and trading stocks. In recent years, it has become popular to 

use AI capabilities for diverse image-processing applications. In 

research, AI has the potential to solve many challenges by enabling 

faster, more accurate analysis of large amounts of data. AI can 

significantly impact biotechnology, where it can optimize the drug 

discovery and development process, reducing the time and cost of 

bringing new therapies to market. AI can also benefit diverse image 

analysis applications, such as analyzing medical images to help 

diagnose diseases and predict which treatments will likely be most 

effective for an individual patient.

While AI technology is rapidly developing, certain challenges 

hinder the adoption of AI in biomedical applications. Developing 

AI systems can be expensive for biotech startups, especially when 

hiring skilled personnel to develop and maintain AI systems. 

There are also ethical concerns around the use of AI for biomedical 

applications. Despite these objections, AI has seen rapid adoption 

in the past decade, primarily driven by its ability to solve challenges 

quickly. The exponential growth in AI-related publications reflects 

the technology adoption by the scientific community (see Figure 1).

Figure 1: There has been a nearly exponential growth in the number of biomedical publications related to AI, including Machine

Learning and Deep Learning, since the year 2000. (Data sourced from PubMed January 2023).

https://pubmed.ncbi.nlm.nih.gov/
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AI, Machine Learning, and Deep Learning: 
What is the difference?

Figure 2: Deep Learning is a powerful subset of Machine Learning, which in 
turn is a subset of the broader field of artificial intelligence.

Figure 3: Training a model on a small ROI to create the Machine Learning-driven classifier. The figure shows a mouse brain cross-section imaged at 10x 
using ZEISS LSM980 with Airyscan. Sample courtesy of Prof. Jochen Herms, LMU München, Germany.

Conventional Machine Learning can learn from a small amount of 

data, but an expert engineer needs to handpick features to feed 

into a classification algorithm such as Random Forest [2] or Support 

Vector Machines [3] (SVM). Features can be obtained from training 

images through the use of digital image filters such as Sobel, 

Conventional Machine Learning vs. Deep
Learning for image analysis

Artificial intelligence, Machine Learning, and Deep Learning are 

related but distinct terminology (see Figure 2).

Artificial intelligence is the broadest term and describes 

techniques that mimic human intelligence in performing tasks. AI-

related biomedical publications in the past decade primarily focused 

on solving challenges using Machine Learning and Deep Learning 

techniques.

Machine Learning is a subfield of AI that focuses on learning from 

data and improving processing efficiency and accuracy over time 

with experience. There are several Machine Learning algorithms 

available, encompassing various learning approaches such as 

supervised, unsupervised, and reinforcement learning. 

Deep Learning is a Machine Learning technique that trains 

artificial neural networks on a large dataset, allowing them to learn 

and make independent, intelligent decisions. These networks have 

gained popularity due to their ability to learn and improve accuracy 

over time without explicit programming. They are well suited to 

solving image analysis challenges that require algorithms to identify 

complex patterns and features in the data. It is worth mentioning 

that, for the purposes of this book, a distinction is made between 

Deep Learning and non-Deep Learning-based algorithms. The latter 

algorithms are referred to as ‘conventional’ Machine Learning 

techniques.

Entropy, and Gabor [4]. Alternatively, Deep Learning networks 

trained on extensive datasets can be utilized as a method for 

feature extraction instead of manual feature crafting. These 

approaches are ideal for scenarios where future data is not 

anticipated to vary much from the data used to train the model. 

For example, a small region of interest (ROI) from a large image can 

be used to train a model, which can then process the entire large 

image (see Figure 3). Similarly, users can take random 2D slices 

from a 3D volume to train a model to process the whole 

3D dataset.

A conventional Machine Learning model may not work well on 

datasets distinct from the training data because the handful 

of parameters used by Machine Learning cannot be tuned to 

anticipate the variability in future data. Additionally, a handful of 

parameters is insufficient to capture the complexity in certain data 

making the model fail at solving complex challenges.

For example, conventional Machine Learning fails at segmenting 

organelles in an electron micrograph of a cell where the objects of 

interest (e.g., mitochondria) show up against a busy background 

(see Figure 4).

Deep Learning does not require hand-tuning of features by an 
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Figure 5: (a) This picture displays the same slice from a high-pressure frozen 
HeLa cell in a FIB-SEM volume as seen in Figure 4a. The sample is courtesy 
of Anna Steyer and Yannick Schwab of EMBL. (b) This image depicts the 
result of Deep Learning segmentation. The U-net based Deep Learning 
algorithm was trained on ZEISS arivis Cloud platform, using the arivis AI 
toolkit. The segmentation results from Deep Learning outperformed those 
obtained through conventional Machine Learning. It is important to note 
that the pixels utilized for training the conventional Machine Learning (as 
seen in Figure 4) and the Deep Learning (as seen in this figure) were not the 
same. Both approaches followed best practices, as advised by the respective 
software packages.

Microscopy image analysis automation 
powered by AI

Figure 4: (a) A slice from a FIB-SEM volume of a HeLa cell that was 
high-pressure frozen. The sample is courtesy of Anna Steyer and Yannick 
Schwab of EMBL. (b) The segmentation result from conventional Machine 
Learning. A Random Forest algorithm was trained using features derived by 
applying the first convolutional layer in the pre-trained VGG16 model. The 
model was trained using the AI toolkit in ZEISS ZEN software. (c) This figure 
depicts the same outcome from (b), with the exception that the output has 
been cleaned using a conditional random field to remove isolated pixels. 
Although the segmentation was able to detect a majority of pixels from 
mitochondria, it failed to identify a significant number of pixels within these 
objects, thereby making it challenging to differentiate them entirely from 
the background. Furthermore, a large number of non-mitochondria pixels 
were erroneously labeled as mitochondria.

A survey of PubMed publications since 2020 shows that AI  

technology has the potential to solve a wide range of challenges in 

biomedical research, including drug discovery [5], radiology [6], and 

medical image analysis [7].

Microscopy image analysis as a subfield saw rapid growth in AI-

based applications, primarily driven by the goal to automate image 

analysis pipelines. Researchers have tried to automate microscopy 

analysis to remove human bias and improve throughput since the 

beginning of digital image analysis in the 1960s [8].

This book focuses on AI applications for microscopy image analysis, 

including various case studies and the no-code tools from ZEISS 

that make AI algorithms accessible to everyone. AI can be daunting, 

especially for users with little or no programming experience. The 

no-code interfaces are user-friendly and allow users with no coding 

experience to create automated image analysis pipelines. They also 

allow users to build custom workflows without technical expertise. 

Labscope, ZEN, and arivis are software platforms from ZEISS that 

provide no-code interfaces that enable AI-powered automated 

image analysis for scientific challenges.

expert. It optimizes millions of parameters during training without 

humans explicitly engineering the features. These algorithms can 

learn multiple levels of detail and significance in the data, allowing 

them to identify high-level features important for the task.

This ability to learn by tuning millions of parameters using a vast 

amount of data makes Deep Learning algorithms generalizable to 

handle data with large variations, such as microscopy data that 

can vary because of sample preparation, lighting, background, 

objective, etc. This large number of features also enables Deep 

Learning to solve complex challenges, such as segmenting 

organelles against a busy background (see Figure 5). However, it 

is essential to note that Deep Learning algorithms learn from the 

given data. If the training data does not contain sufficient examples 

of the variations, the model may not perform well on those 

variations.
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No-code products from ZEISS
ZEISS offers a range of no-code products to allow users to 

benefit from AI-powered image analysis solutions. These tools 

are accessible to a range of users, from routine labs and digital 

classrooms conducting small-scale experiments, to biotech and 

academic researchers conducting experiments with large, multi-

dimensional datasets.

Products for routine lab tasks

Many routine lab imaging tasks, such as cell counting, can benefit 

from AI-powered automation. Labscope is an easy-to-use imaging 

app for routine labs and university or school biology classrooms. 

The app provides ready-to-use AI-powered solutions, including fast 

and effective cell counting, allowing its users to perform analysis on 

any microscope with a camera.

Products for automated image acquisition and segmentation

In biotech and academic research, users often automate the image 

acquisition process to ensure reproducibility and faster throughput. 

ZEN software suite makes high-quality image acquisition easy on 

research-grade ZEISS microscopes. ZEN also provides an ‘AI toolkit’ 

for image analysis that allows for smart microscopy; for example, 

using AI to automatically analyze a low-magnification survey image 

to detect regions of interest for high-magnification experiments. 

This allows for automated imaging of multiple large samples 

without any human intervention.

Automated imaging allows the collection of large amounts of data 

in a short period, which can be helpful for applications such as 

studying the effects of a particular treatment on multiple cells or 

organisms. But the image analysis throughput must keep up with 

image acquisition to maximize the benefit. ZEN’s AI toolkit can be 

utilized to enhance application-specific automated image analysis 

solutions. Some sample applications within ZEN include 2D cell 

counting, cell confluency, gene and protein expression, as well 

as automated spot detection. As the data size, dimensions, and 

complexity increase, the analysis can be scaled up using the arivis 

software ecosystem.

Data-agnostic image analysis tools

arivis represents an ecosystem of software solutions designed 

for data-agnostic image analysis, allowing the analysis of images 

in many formats from different microscope vendors (and other 

imaging hardware, such as MRI and CT). The primary arivis solutions 

include ZEISS arivis Pro, ZEISS arivis Hub, and ZEISS arivis Cloud.

ZEISS arivis Pro is a visualization-centric multi-dimensional image 

analysis platform that provides interactive tools and the ability to 

develop automated analysis pipelines for virtually unlimited-size 

data with just a few clicks.

ZEISS arivis Hub enables the design and execution of large-

scale experiments via parallelized processing using multiple 

computational workers on local workstations, servers, or cloud 

servers.

ZEISS arivis Cloud provides the infrastructure for cloud storage 

and computation of image analysis pipelines. Its AI toolkit, arivis 

AI, enables users to benefit from Deep Learning without needing 

to know how to code. These Deep Learning trained models can be 

incorporated into arivis and ZEN image analysis pipelines.

Figure 6 provides an overview of the ZEISS microscopy software 

ecosystem.

Figure 6: ZEISS microscopy software ecosystem.

Train and share Deep Learning models on the cloud 

for AI-driven image analysis.

https://www.zeiss.com/microscopy/en/products/

software/arivis-cloud-ai.html 

Learn more about ZEISS arivis Cloud

https://www.zeiss.com/microscopy/en/products/software/zeiss-labscope.html
https://www.zeiss.com/microscopy/en/products/software/zeiss-zen.html
https://www.arivis.com/
https://www.arivis.com/products/pro
https://www.arivis.com/products/hub
https://www.arivis.com/products/cloud-ai
https://www.zeiss.com/microscopy/en/products/software/arivis-cloud-ai.html 
https://www.zeiss.com/microscopy/en/products/software/arivis-cloud-ai.html 
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How to train custom AI models 
for image segmentation
What is image segmentation?

Image segmentation is the process of dividing an image into various 

sections corresponding to different regions of similarity, referred to 

as regions of interest (ROI) in scientific terminology. These regions 

represent the original image in a way that is easier to analyze.

In microscopy image analysis, segmentation is a key step in many 

applications. For example, automated counting, sizing, and tracking 

of biological cells enable high-throughput screening in drug 

discovery experiments (see Figure 1).

Similarly, grain segmentation of 3D-printed materials informs 

and improves the additive manufacturing process by providing 

microstructural insights. Plus, the segmentation of various minerals 

and porous structures helps petrologists understand the movability 

of hydrocarbons in sedimentary rocks.

Figure 1: Segmentation in a microscopy experiment tracking cell nuclei. (a) Image showing the DAPI-stained cell nuclei in blue. (b) The nuclei from (a) were 
segmented by employing global thresholding and then separated using the Watershed algorithm. The segmented nuclei are depicted in red. (c) The nuclei 
were segmented and tracked throughout the time series, with each nucleus and its corresponding track displayed in randomly assigned colors. (d) A plot 
showing the mean squared displacement of selected nuclei.

Figure 2: Otsu-based segmentation of a fluorescence micrograph. (a) Fluorescence micrograph of a sample 
stained with DAPI showing nuclei in blue. (b) Otsu segmentation shows the nuclei regions in white.

Algorithms for image segmentation
Image segmentation has evolved significantly over the last five 

decades, from traditional techniques in the 1970s and 1980s to 

using Deep Learning in recent years. Traditional methods, such 

as thresholding, edge detection, and region growing, relied on 

manually tuning parameters making the results irreproducible and 

subject to human bias.

Otsu’s segmentation method

A key method, called Otsu’s method, provides a way to 

perform automatic segmentation using the histogram threshold 

approach [1]. Otsu’s algorithm returns a single intensity threshold 

value that separates pixels into either foreground or background 

classes.

Otsu’s algorithm is a global thresholding method and assumes the 

image is homogeneous and follows a bimodal distribution. 

Therefore, this approach may not be ideal for noisy images or 

showing multiple regions with similar mean grey levels but varying 

textures. However, its simplicity and computationally fast nature 

made it the preferred choice for simple segmentation tasks such 

as nuclei segmentation in fluorescence microscopy images (see 

Figure 2).
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The Watershed algorithm
Otsu segmentation only divides the image into background and 

foreground, but it cannot distinguish between objects that touch 

one another. Additional image processing techniques, like the 

Watershed algorithm [2], are often used to separate touching 

objects. The Watershed algorithm separates objects by creating 

boundaries between regions ‘flooded’ from different markers, 

hence its name (see Figure 3).

However, a disadvantage of the Watershed method is that it may 

break down a single object into several pieces, depending on its 

shape.

Figure 3: (a) Otsu-segmented binary image. (b) Otsu-segmented binary 
image followed by the Watershed separation of objects. The separation 
between grouped objects is evident in this image. 

Machine Learning segmentation techniques
The 2000s saw the introduction of conventional Machine 

Learning techniques for image segmentation, including decision 

trees, random forests, and Support Vector Machines (SVM). 

These methods improved traditional techniques by incorporating 

contextual information and learning from data, making it possible 

to automate the segmentation of images with complex or varied 

intensity values and textures. Conventional Machine Learning works 

by training a classifier (e.g., a SVM) on various attributes associated 

with the training data. For images, these attributes can be defined 

via features extracted from them.

Digital image filters can be engineered to extract features 

representing various intensities and textural information in images. 

For example, the Sobel filter [3] calculates the image intensity 

gradient at any point and generates an image emphasizing edges. 

Similarly, the Gabor filter [4] combines sinusoidal and Gaussian 

functions to describe and show different textures. Adjusting filter 

parameters can create countless Gabor kernels that serve as feature 

extractors. For instance, a kernel with theta set to π/2 acts as a 

band-pass filter that emphasizes horizontal features in the image. 

Likewise, a kernel with theta set to π accentuates vertical features.

Figure 4 shows the application of these kernels on a cross-section 

of a NAND flash memory chip, illustrating that modification of the 

theta value can emphasize features oriented in a specific direction.

Figure 4: Using the Gabor filter to extract features from a micrograph of NAND flash memory. (a) A cross-section of a NAND flash memory chip imaged 
using ZEISS Crossbeam 550 FIB-SEM. (b) Digital filter kernels generated from adjusting Gabor parameters. (c) The features that are produced when the 
appropriate Gabor kernels are applied. One kernel emphasizes the input image’s horizontal details (top), and the other highlights the vertical details 
(bottom).
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Instead of handcrafting the features, Deep Learning networks 

trained on large datasets can also extract features from an image. 

For example, the VGG16 network [5] trained on the ImageNet [6] 

dataset can extract many features from images of a NAND flash 

memory chip (see Figure 5). These features can be used as input 

information for conventional Machine Learning algorithms capable 

of learning how to classify pixels (segmentation) or entire images 

(classification).

Although it is possible to use conventional Machine Learning 

techniques for a broad range of image segmentation, their 

effectiveness decreases as the images become more complex in 

shape and texture. Furthermore, these algorithms tend to perform 

poorly on images that vary in intensity compared to the training 

images, making them poorly generalizable to other datasets.

Deep Learning algorithms for image 
segmentation
Deep Learning algorithms demonstrate greater generalizability than 

conventional Machine Learning algorithms. 

A convolutional neural network (CNN) is a Deep Learning algorithm 

explicitly designed for image processing tasks. One of the most 

popular CNN architectures is U-net, introduced in 2015 by Olaf 

Ronneberger et al. [7]. It is widely used for biomedical image 

segmentation. The U-net architecture is particularly good at image 

segmentation because it can learn both local and global features of 

images.

While Deep Learning is a powerful technique, it requires a lot of 

Figure 5: The use of a pre-trained Deep Learning model as a feature extractor. (a) A cross-section of a NAND flash memory chip imaged using ZEISS 
Crossbeam 550 FIB-SEM. (b) The VGG16 neural network was pre-trained on the ImageNet dataset. (c) Features obtained from the input image using the 
second convolutional block of the pre-trained VGG16 network. See reference 5 for technical details.

“ZEISS provides software solutions to 
assist researchers in addressing the 
difficulties of analyzing massive amounts 
of data with limited resources”

labeled data and computational resources for training. But once 

trained, Deep Learning models can be used for extended periods 

due to their excellent generalizability. ZEISS provides software  

solutions to assist researchers in addressing the difficulties of 

analyzing massive amounts of data with limited resources, enabling 

them to achieve reproducible results at a quicker pace.
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The ZEISS software ecosystem
Each method discussed has its strengths and weaknesses, and 

the choice of method depends on the application and the type 

of image being analyzed. The ZEISS software ecosystem offers a 

variety of powerful tools to train and integrate Machine Learning 

and Deep Learning models into image processing and analysis 

pipelines. The building blocks of the ecosystem are:

 � Labscope: An easy-to-use imaging app for routine labs,  

universities, and schools.

 � ZEN and ZEN Core: Universal software interfaces for image  

acquisition and analysis on advanced microscopes from ZEISS.

 � ZEISS arivis Cloud: Infrastructure for cloud storage and  

computation of image analysis pipelines.

 � arivis AI: A toolkit for data-driven training of Deep Learning 

models for image segmentation. 

 � ZEISS arivis Pro: Visualization-centric multi-dimensional 

image analysis software.

 � arivis VR: A module for virtual reality visualization and  

collaboration during image analysis.

 � ZEISS arivis Hub: Design and execution of large-scale 

experiments via parallelized processing using multiple 

computational  

workers. 

Please note that ‘arivis’ refers to the data-agnostic image analysis 

platform from ZEISS.

ZEN and arivis provide the tools for training Machine Learning and 

Deep Learning models that can then integrate into image analysis 

pipelines throughout the ecosystem. The rest of this chapter 

provides an overview of training custom Machine Learning models 

using ZEN and Deep Learning models using arivis AI, respectively.

Training Machine Learning models in ZEN
Note that training a Machine Learning model is similar in both ZEN 

and ZEN Core software packages. For simplicity, both products 

are referred to as ZEN in this chapter. ZEN offers sophisticated 

image analysis features (some AI-powered) and facilitates 

image acquisition through intelligent automation and feedback 

microscopy processes.

One part of the ZEN AI toolkit is a user-friendly interface that 

enables non-experts to create personalized Machine Learning 

models. This process starts with defining the ground truth 

by painting pixels for each segmentation class using a digital 

paintbrush. This process is commonly referred to as ‘image 

annotation.’ Clicking the ‘Train and Segment’ button trains the 

model in real-time (see Figure 6). 

Figure 6: Conventional Machine Learning model training interface in ZEN.
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Figure 7: Flowchart depicting model sources compatible with ZEN. 

“The ZEISS software ecosystem offers 
a variety of powerful tools to train and 
integrate Machine Learning and Deep 
Learning models into image processing 
and analysis pipelines”

Multichannel feature extraction is automatically performed based 

on the user-selected feature extractors. Users can add additional 

labels through further painting if the initial segmentation is 

unsuccessful in certain areas and can repeat this process until they 

are satisfied with the results.

The ZEN-trained Machine Learning model can be used as part of 

the image analysis pipelines within the ZEN software. It is also 

possible to import external Machine Learning and Deep Learning 

models into ZEN to use in analysis pipelines. External models can be 

imported using the czmodel open-source Python package. 

Furthermore, Deep Learning models trained on ZEISS arivis Cloud 

can be seamlessly imported to ZEN. Thus, the AI toolkit in ZEN 

enables image analysis using custom-trained Machine Learning 

models and imported models for image analysis (see Figure 7).

Previously, it was pointed out that conventional Machine Learning 

experiences a decline in efficiency as the complexity of features in 

images increases, making these models unreliable. 

This is where Deep Learning demonstrates its superiority, especially 

when a large amount of training data is accessible. The following 

section delves into the different elements of Deep Learning and 

outlines the procedure for training customized models for image 

segmentation using the arivis AI toolkit.

https://github.com/zeiss-microscopy/OAD/tree/
master/Machine_Learning.

Learn more about ZEN AI tools

https://pypi.org/project/czmodel/
https://github.com/zeiss-microscopy/OAD/tree/master/Machine_Learning
https://github.com/zeiss-microscopy/OAD/tree/master/Machine_Learning
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Training Deep Learning models using the
arivis AI toolkit
arivis AI is an advanced Deep Learning toolkit that runs on ZEISS 

arivis Cloud. It helps users annotate images and train Deep 

Learning models for image segmentation. Users can utilize the 

resulting models on both ZEISS arivis and ZEN platforms. arivis AI 

offers a user-friendly interface that allows users to establish the 

ground truth by painting pixels and training a personalized model 

by clicking the ‘Train’ button. The following link leads to a video 

tutorial that explains the process of custom Deep Learning model 

training for image segmentation using arivis AI. 

arivis AI employs the widely recognized U-net architecture (see 

Figure 8) for image segmentation but with encoder and decoder 

modifications to enhance speed and accuracy. 

Several other improvements have been made in the Deep Learning 

training and segmentation process to make it user-friendly and 

accessible to individuals of any skill level. Examples include:

 � Using pre-trained weights.

 � Allowing for partial annotations.

 � Automatic definition of boundary annotations.

 � Using image augmentation techniques.

 � Selecting the segmentation tasks ‘Semantic Segmentation’  

and ‘Instance Segmentation’.

 � Implementation of smooth tiling.

Pre-trained weights

Unlike traditional Machine Learning, Deep Learning requires a large 

amount of data for training. However, arivis AI is equipped with 

preloaded, pre-trained weights, allowing faster model training with 

less data. With arivis AI, it is recommended to start with as little 

as 50 annotations. The users can then add additional labels based 

on the outcome of the initial segmentation. Thus, tweaking their 

trained model but investing only the necessary effort.

Partial annotations

Traditional training methods for Deep Learning-based semantic or 

instance segmentation algorithms often require extensive labeling. 

Every pixel in each training image must be annotated, including 

Figure 8: The illustration shows a re-created U-net architecture based on the original paper [7], which takes in an RGB input image with dimensions of  
512 x 512 and produces a segmented image with the same dimensions for a chosen class.

the overly represented areas, which can be a time-consuming and 

inefficient process for users.

arivis AI introduces a more efficient method called ‘partial 

annotations’ for segmentation as part of its Deep Learning 

workflow, allowing users to concentrate on under-represented 

regions in training images, making the process more efficient.

This is particularly useful for biotech applications where images are 

usually large (see Figure 9). Automatic boundary annotation further 

optimizes the usefulness of partial annotations.

Training Deep Learning models using arivis AI.

https://zeiss.widen.net/s/vdwc9lnxsp/en_how_to_

arivis_tutorial_for_ai_ebook_0423ww

Tutorial

https://zeiss.widen.net/s/vdwc9lnxsp/en_how_to_arivis_tutorial_for_ai_ebook_0423ww
https://zeiss.widen.net/s/vdwc9lnxsp/en_how_to_arivis_tutorial_for_ai_ebook_0423ww
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Automatic boundary annotation

Segmenting the central pixels of objects is easier than segmenting 

the edge because the boundary between objects and the 

background is often uncertain. Thus, it is crucial that users properly 

annotate them during the training phase. arivis AI makes it 

convenient for the user to define these boundaries by automatically 

cutting out annotated objects from the surrounding background 

(see Figure 9).

Figure 9: The training interface in arivis AI, highlighting selected 
mitochondria in yellow and background with purple dots. The image shows 
a slice from a FIB-SEM volume of a HeLa cell that was high-pressure frozen. 
The sample is courtesy of Anna Steyer and Yannick Schwab of EMBL.Image augmentation

Image augmentation improves the generalizability of a trained 

model by giving the algorithm various variations of the training 

data, such as rotated, zoomed, and stretched images. This helps 

improve model accuracy when it analyzes new data because they 

might resemble the transformed images used during training. 

arivis AI performs various image augmentation operations in the 

background (see Figure 10).

Figure 10: Augmented images and the respective masks produced while training a model in arivis AI. The image shows a slice from a FIB-SEM volume of a 
HeLa cell that was high-pressure frozen. The sample is courtesy of Anna Steyer and Yannick Schwab of EMBL.

Figure 11: The arivis AI interface showing the segmentation choices 
available to the user.

“The arivis AI toolkit offers a range of 
features that simplify Deep Learning 
training”

Choosing a segmentation task

In arivis AI, users can select the segmentation approach appropriate 

to their desired application. There are two segmentation options:

1. Semantic segmentation (pixel-based).

2. Instance segmentation (object-based).

For example, when classifying regions of tissue, semantic 

segmentation enables users to assign each pixel to a specific tissue 

class. When segmenting nuclei, instance segmentation is necessary 

as it allows the user to extract morphological parameters from 

every nucleus. arivis AI offers both options, giving the user the 

freedom to achieve their image segmentation goals (see  

Figure 11).
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Smooth tiling

Deep Learning-based segmentation uses a lot of device memory. 

To address this, it is common practice to divide large images into 

smaller patches and combine them back into the large image. 

However, simply arranging the patches back into a large image 

can result in edge artifacts where the continuity of objects may be 

disrupted (see Figure 12). 

Standardizing the experimental conditions

In addition to standardizing the imaging parameters, users can 

optimize other experimental parameters. The goal is to collect 

images where the objects or regions of interest are as consistent 

as possible. The measures below help users achieve this, where 

applicable:

 � Maintaining a consistent size, location, and orientation for the 

regions of interest.

 � Using the same sample preparation for microscopy images.

 � Keeping the background homogeneous.

 � And keeping the object density low (i.e., the number of objects 

per unit area). 

Avoiding complexity when defining classes

Try to avoid defining multiple classes to segment similar objects 

with minor differences. For example, instead of training an 

algorithm to segment small and large objects, it may be easier to 

train a model to segment all objects and use the size information 

to separate them into distinct classes after the initial segmentation. 

While segmenting objects into specific classes during the training 

process may seem easier and obvious, post-processing is usually 

more efficient because it enables a more generic model that can 

handle a wide range of objects to adapt to different applications.

Tips for achieving a reliable Deep Learning 
model
arivis AI offers a range of features that simplify Deep Learning 

training. However, the user can make many decisions to streamline 

the process. Here are some suggestions.

Standardizing the imaging conditions

The segmentation task’s complexity is impacted by variations 

in imaging conditions. Standardizing the imaging parameters 

facilitates the algorithm’s learning of the task, as fewer annotations 

are required. Adhering to the following guidelines ensures optimal 

training of arivis AI. 

 � The microscope illumination settings should remain consistent 

between images to maintain similar-intensity histograms 

between them.

 � The magnification and binning should be the same for objects 

that have similar pixel sizes.

 � It is recommended that the size of individual regions or objects 

that are being segmented be kept below 512 × 512 pixels.

Figure 12: (a) Cryo-electron micrograph of a cell showing mitochondria. A Deep Learning model has been trained using arivis AI to segment faint 
mitochondria from the background. (b) The segmentation result without smooth blending produces noticeable artifacts along the patch edges, leading to 
incorrect classification of edge pixels as mitochondria. The straight edge is also clearly visible, as indicated by the black arrows. (c) The seamless integration 
of patches using ‘smooth tiling’ creates a segmented image without any visible anomalies. Sample courtesy of Dr. York-Dieter Stierhof from Eberhard Karl 
University of Tübingen.

To avoid this, arivis AI uses predictions from overlapping tiles 

that get blended by weighing pixels closer to the tile center more 

heavily. This method is called ‘smooth tiling’. The logic behind it is 

that pixels closer to the tile center represent more image context 

and are considered more reliable.
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Figure 13: Model-centric versus data-centric model development for microscopy applications.

Starting simple and increasing the complexity as needed

Achieving robust segmentation of many classes across different 

imaging conditions is the ultimate goal of developing a Deep 

Learning segmentation model. However, it is challenging for the 

algorithm to learn all the complexity when provided only a few 

annotated objects within the large parameter space.

A data-centric approach [8] quickly develops a robust Deep 

Learning segmentation model. arivis AI provides the necessary tools 

to construct the perfect training dataset using the data-centric 

strategy (see Figure 13). Such datasets include a precise number 

of annotations in crucial areas to attain the level of segmentation 

robustness that the user desires.

It is recommended to approach complex tasks by starting with a 

small, straightforward portion and gradually increase the complexity 

in order to build the complete annotated dataset. 

The recommended approach for segmentation is as follows:

Recommended approach for segmentation
1. Begin by selecting a single class to segment.

2. Approximately 50 objects or regions in similar images should 

be annotated (for example, from a single experiment).

3. After training, the accuracy of the algorithm at segmenting  

the first class should be evaluated.

4. To improve the algorithm’s robustness, images with more  

variability (such as from different experiments) should be  

added and steps 2 and 3 should be repeated.

5. Once the first class has been successfully segmented across all 

images, additional classes should be annotated and trained by 

repeating these five steps. 

This approach allows the user to concentrate on annotating 

challenging features rather than wasting time on easy ones. 

Gradually increasing the complexity helps the user develop intuition 

about which image features are difficult for the algorithm to learn.

In microscopy, variations in datasets arise because of different 

sample preparation procedures and various experimental 

conditions. Examples include the illumination source, magnification, 

and duration of observation. Therefore, to create generalized 

models, it is essential that the final annotated dataset reflects the 

diversity expected in future data.

Using AI-trained models in applications
Models trained with arivis AI can be incorporated into image 

analysis workflows across various ZEISS software packages 

including ZEN and arivis. The models can be used for image 

segmentation on ZEISS arivis Cloud, which is especially effective 

for applications where no further image analysis is needed beyond 

the initial segmentation and measurement. Users get a report that 

details over 18 morphological measurements extracted from the 

segmented objects, including the positions of the bounding boxes 

around each object. Users can also create customized workflows to 

define application-specific measurements.
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Some applications will require advanced post-segmentation 

image analysis. arivis AI models can be downloaded and used 

with the ZEN, ZEISS arivis Pro, and ZEISS arivis Hub image analysis 

pipelines. These products offer push-button solutions for most 

standard applications. Real-time analysis of images captured 

using ZEISS microscopes is achievable using AI-powered image 

analysis pipelines in ZEN. Large multi-dimensional datasets can 

be imported into ZEISS arivis Pro (see Figure 14) for automated 

analysis regardless of whether they were collected using ZEISS or 

non-ZEISS microscopes. Automated analysis can be performed on 

these datasets and scaled up for faster processing with ZEISS arivis 

Hub. The following chapter provides an overview of how to use AI 

models for routine image analysis.

Figure 14: FIB-SEM image of a high-pressure frozen HeLa cell. Sample courtesy of Anna Steyer and Yannick Schwab. Visit the arivis web page to learn more.

Additional tips to enhance image 
segmentation efficiency

1. It is advised not to annotate areas where the algorithm has 

already demonstrated mastery.

2. The recent training segmentations should be examined to  

determine areas where the algorithm struggles, and these 

areas should be given priority for annotating.

3. If the algorithm encounters difficulties in separating objects, 

adding a one-pixel border around the background between 

them may be helpful.

4. Recognizing rare classes can be a challenge for the algorithm. 

To improve its understanding of these classes, finding  

additional training images that include examples of these  

cases is recommended. 

https://www.arivis.com/use-case/ai-volume-electron-microscopy
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How to use AI models for 
routine image analysis
Life science encompasses diverse disciplines—from systematic 

zoology to human anatomy and protein interactions at the 

molecular level. Equally diverse is the application of microscopy in 

these branches of science. Microscopes are capable of much more 

than resolving smaller and smaller structures. The microscope is 

perhaps the best multitool in the laboratory, with uses in medical 

diagnostics, biotechnology, and the pharmaceutical sector.

Analysis and monitoring are two critical applications of 

microscopes. For example, tissue and blood samples are routinely 

analyzed for atypical cells and cell morphologies, and eukaryotic 

While reliability and reproducibility are always critical, time is also 

important because microscopy experiments can produce a lot of 

data, all of which needs to be analyzed with care and validity.

The potential role of AI tools in routine image 
analysis
AI tools can assist with repetitive and time-consuming microscopy 

tasks to save time and eliminate human error (see Figure 2). 

Artificial neural networks can identify processes, patterns, and 

states in organisms, tissues, and cells that humans may find difficult 

to detect even with advanced microscopy techniques.

These AI tools can also link vast amounts of data and learn from 

accumulated experience to refine specified processes. Manual work 

Figure 1: Cell cultures need regular monitoring to check their health and behavior.

that may have taken hours, days, or weeks can now be performed 

automatically with ease, and results are delivered in real time. Plus, 

the ability of AI to detect and analyze properties that would be 

difficult for humans to detect enables the fascinating prospect of 

revolutionary discoveries.

Like the human brain, AI algorithms constantly learn and improve. 

Features are detected, interpreted, and compared, and decisions 

and predictions are made. The accuracy of predictions and decisions 

improves with larger datasets, and with every new input or inquiry, 

the network learns to adapt to new structures.

cells in cell cultures are checked for their health and physiological 

behavior (see Figure 1). Furthermore, these applications are 

routine and repetitive, and the resulting images can answer crucial 

questions, such as:

 � Are my cells healthy?

 � Is there a detectable pathogen?

 � Was the gene successfully inserted into my cells?
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Figure 2: Counting cells and determining their confluency manually can become cumbersome.

Overcoming limitations of AI tools

While AI tools for lab applications are sophisticated, their wider 

use may be limited because they can be difficult to adapt to new 

applications, require enormous amounts of computing power, or 

require advanced IT skills.

Ideally, AI tools should be accessible to as many people as possible, 

adaptable to different areas of interest, and work on inexpensive 

hardware.

The AI modules for the ZEISS Labscope imaging app offer these 

advantages and assist with performing time-consuming yet 

important lab tasks.

By combining Deep Learning methods with large training datasets, 

the modules can adapt to various cell types and morphologies on 

which they were not initially trained and can handle images of 

varying quality.

The versatility and the ability to collect reliable and reproducible 

data with minimal input and expertise required from the user 

make the Labscope AI modules from ZEISS an essential product for 

microscopists in life science, medicine, and biotechnology.

The role of AI tools for determining cell 
confluency
Cell confluency refers to the extent to which a layer of cells in a 

culture dish or flask has grown and spread to cover the surface 

area. It describes how densely packed the cells are and is typically 

expressed as a percentage of the total surface area covered by cells.

In general, cells are seeded into a culture dish or flask at a low 

density and allowed to grow until they reach a desired level of 

confluency (see Figure 3). At low confluency, cells are often actively 

dividing and may be used for experiments that require actively 
Figure 3: Cells can be seeded in Petri dishes, flasks or even cell factories.

“While AI tools for 
lab applications are 
sophisticated, their 
wider use may be 
limited”

proliferating cells. At higher confluency, cells may become more 

quiescent and may exhibit different behaviors or responses to 

stimuli.

Cell confluency is a fundamental parameter in cell culture 

experiments, as it can impact cell behavior and experimental 

outcomes. Monitoring cell confluency is routine for every cell 

culture, as it determines when cultures need to be transferred 

to a new cell culture vessel. This step may dictate whether an 

experiment can be carried out or not and thus has a significant 

impact on the laboratory workflow.

Challenges of measuring cell confluency

Traditionally, cell confluency is assessed by looking at the layer 

of cells under a microscope and estimating the degree of surface 

area coverage. However, relying on individual estimates of cell 

confluency has several disadvantages in cell culture experiments. 

These include:

 � Lack of reproducibility.

 � Inaccuracy.

 � Lack of standardization between laboratories.

These issues can be caused and exacerbated by different individuals 

making confluency measurements, and variability in how the cells 

were seeded.
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AI tools can improve reliability and reproducibility of 

confluency measurements

AI tools like ZEISS Labscope AI Cell Confluency address these issues, 

enabling reproducible and accurate measurements with the click of 

a button. 

The AI-trained algorithm recognizes cells in culture vessels based 

on transmitted light microscopy images, regardless of cell type 

and magnification of the image, and provides a specific value for 

confluency in the respective frame. The algorithm also provides an 

average of all acquired data points in the culture vessel (see 

Figure 4). Also, users can retrospectively analyze already stored 

image data for confluency.

The ability to examine any number of sections of the culture vessel 

enables a statistical determination of cell density. Furthermore, the 

accumulated confluence data can be easily exported and further 

analyzed in statistical analysis software.

Given these advantages, the Labscope AI Cell Confluency module 

significantly enhances the efficiency and accuracy of cell confluency 

measurements, ultimately improving the reliability of experimental 

outcomes.

How AI can help with cell counting
Cell counting is another essential task in cell biology laboratories, 

enabling the determination of the number of cells in a culture 

vessel or experiment setup. This information is crucial for planning 

experiments and ensuring the available number of cells is sufficient.

Challenges associated with traditional cell counting

The traditional method for cell counting is to detach cells from 

the surface of the culture vessel using trypsin, transfer them 

to a counting chamber, and count them using phase contrast 

microscopy and a manual hand counter.

Figure 4: Screenshot showing ZEISS Labscope AI Cell Confluency measurement for HeLa cells. The 

module shows the confluency for the current field of view (55%) and the average of the already 

acquired  field of views (55%).

However, manual cell counting is a time-consuming and labor-

intensive process, especially when large numbers of samples need 

to be counted. This can slow research progress and increase the 

likelihood of errors due to fatigue. It also relies on the observer’s 

ability to visually distinguish between cells and debris, and to 

accurately count the cells in each grid, which can introduce 

significant subjectivity into the results, as different observers may 

count cells differently.

In addition, manually counting cells can increase the risk of 

contamination and impact cell viability. The results can be hard 

to reproduce since they differ across different observers, labs, 

and experiments. In cases when there are not enough cells for an 

experiment after manual counting, valuable time is lost both by the 

measurement itself and while the cells settle down and reattach to 

the culture vessel so they can continue to grow.

AI tools can help simplify cell counting

The AI Cell Counting module for Labscope overcomes these 

challenges by recognizing and counting cells in a field of view at 

the touch of a button. The AI algorithm can detect and differentiate 

cells regardless of their type or morphology. Moreover, the 

algorithm’s reliability and reproducibility provide consistent and 

accurate results.

Like the Cell Confluency module, users can process and analyze 

existing images. In addition to the number for the cell count, a 

graphical representation of the detection process allows users to 

check the algorithm’s functionality at any time. Results can be 

exported in common file formats for further processing in statistical 

tools such as Microsoft Excel.

“The AI-trained algorithm recognizes 
cells in culture vessels based on 
transmitted light microscopy images, 
                        regardless of cell type 
                        and magnification of 
                        the image”

Easy-to-use imaging app for connected 

microscopes, share your discoveries.

https://www.zeiss.com/microscopy/en/

products/software/zeiss-labscope.html

Learn more about Labscope 

https://www.zeiss.com/microscopy/en/products/software/zeiss-labscope.html
https://www.zeiss.com/microscopy/en/products/software/zeiss-labscope.html
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Figure 5: ZEISS Axiovert 5 digital is an all-in-one cell imaging system based on AI.

The benefits of AI in routine image analysis
Using AI in daily laboratory work promises to optimize routine 

workflows and improve productivity. AI combined with microscopy 

will continue to be one of the game changers in everyday 

laboratory life. Routine microscopes like ZEISS Axiovert 5 digital, 

are already compatible with the AI modules for Labscope and 

offer all the advantages of automatic cell counting and automatic 

confluency measurement (see Figure 5). While the human factor 

remains essential in ensuring the accuracy and reliability of results, 

AI enriches microscopy examinations with tools for reducing errors 

and providing greater efficiency by eliminating the need to perform 

repetitive and time-consuming tasks.

Using cell contrast in current times. 

https://www.zeiss.com/microscopy/en/

applications/laboratory-routine/microscopy-

solutions-for-cell-culture.html

Learn more about microscopy 
solutions for cell culture

https://www.zeiss.com/microscopy/en/applications/laboratory-routine/microscopy-solutions-for-cell-culture.html
https://www.zeiss.com/microscopy/en/applications/laboratory-routine/microscopy-solutions-for-cell-culture.html
https://www.zeiss.com/microscopy/en/applications/laboratory-routine/microscopy-solutions-for-cell-culture.html
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Benefits of ZEISS arivis Pro

 � Instant analysis and visualization of images on any workstation 

or notebook, regardless of size or complexity.

 � Advanced and user-friendly image analysis tools with  

interactive preview options.

 � Integrated AI and Machine Learning for fast and reliable image 

processing, segmentation, and object classification.

 � Local training and the ability to import pre-trained Deep 

Learning models, with access to ZEISS arivis Cloud and the 

arivis AI toolkit.

 � Flexible and scalable workflows that connect seamlessly with 

ZEN, ZEISS arivis Cloud, MATLAB, and other open-source 

platforms such as Stardist and Cellpose.

 � Distance measurements, classification, and  

compartmentalization.

 � Robust 3D/4D image analysis pipeline for cell segmentation, 

tracking, tracing, annotation, quantitative measurement, and 

statistical analysis.

 � Easy creation and export of high-resolution 3D/4D images and 

movies for fast publication and perfect presentation of your 

research data.

 � Integration with arivis Pro VR for immersive and productive 

visualization and analysis in virtual reality (VR).

 � Seamless connection to ZEISS arivis Hub, the scalable solution 

for data management, storage, and processing.

The ZEISS arivis Scientific Image Analysis Platform is the ultimate 

solution for handling multi-modal, multi-dimensional microscopy 

data with ease. This comprehensive family of software products, 

toolkits, and modules scales, parallelizes, integrates, and connects 

all image analysis pipelines, ensuring that image data proficiency 

and efficiency are enhanced at all levels and throughout the 

organization. You can concentrate on your research as ZEISS arivis 

takes care of your central imaging databases, from file storage 

format to user- and project-specific computations to standardized 

reporting. The platform also enables scaling of image analysis and 

applying automated AI-driven image analysis workflows, expanding 

your analysis capabilities.

ZEISS arivis Pro
If you have modern microscope systems, such as high-speed 

confocal, light sheet, super-resolution, electron microscopy, or X-ray 

instruments, which produce vast amounts of imaging data, then 

ZEISS arivis Pro (formerly Vision4D) is the software for you. This 

modular software can handle multi-channel 2D, 3D, and 4D images 

of almost unlimited size, regardless of local system resources. With 

ZEISS arivis Pro, you can process, analyze, and store your imaging 

datasets without constraints and get your results in next to no time!

With the ZEISS arivis Pro Analysis pipeline, even novices can start 

their image analysis journey today, without being an image analysis 

expert or programmer. This robust and flexible click-and-play 

solution allows you to process and quantify any multi-dimensional 

microscope image data easily. Whether you’re a beginner or an 

expert, you can use predefined workflows for common use cases or 

combine different operators for denoising, segmentation, filtering, 

and other analysis tasks in a clearly structured pipeline with an 

interactive preview. The analysis strategy and iterative approach of 

ZEISS arivis Pro allow image processing and segmentation of a small 

field of view, a 3D/4D subset, or the complete dataset.

Once you’ve analyzed your data, you can easily review the results 

using synchronized split-view windows simultaneously in 2D and 

3D views. This feature is particularly helpful for densely packed 

structures and tracking experiments. The software’s integrated 

Machine Learning and Deep Learning functionality allow even 

difficult samples to be easily segmented without deep knowledge 

of AI analysis methods.

The ZEISS arivis Scientific 
Image Analysis Platform

“3D image data is easily quantified using 
the ZEISS arivis Pro Analysis pipeline”

Automated end-to-end image analysis pipelines for 

multi-dimensional images; no  matter the source, 

size or complexity.

https://www.zeiss.com/microscopy/en/products/

software/arivis-pro.html

Learn more about ZEISS arivis Pro

https://www.zeiss.com/microscopy/en/products/software/arivis-pro.html
https://www.zeiss.com/microscopy/en/products/software/arivis-pro.html
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Automatic neuron tracing for ZEISS arivis Pro
Automatic neuron tracing includes two established scientific 

methods to choose from, giving neuroscientists faster-than-ever 

results even with large microscopy imaging data.

With integrated algorithms, the module saves you precious time 

and effort when visualizing and tracing neuroscience datasets while 

at the same time ensuring flexibility for a wide range of sample 

data and imaging modalities (see Figure 1).

Figure 1: Automatic 3D neuron tracing of neuronal tissue (mouse brain) with Vision4D 4.0 (now 

ZEISS arivis Pro) and ZEISS LSM 980 confocal microscope. Original 3D tissue volume dataset (45GB 

CZI, confocal fluorescence microscopy, single channel) provided by Dr. Steffen Burgold, ZEISS RMS 

Customer Center Oberkochen, Germany.

Figure 2: Sample of Arabidopsis thaliana cryo-volume electron microscopy 

(cryo-vEM) provided by York-Dieter Stierhof, Tübingen University. Volume 

imaging after cryo-fixation using high-pressure freezing with a ZEISS 

Crossbeam FIB-SEM (focused ion beam scanning electron microscope). 

Model creation and inference with the new local Deep Learning Trainer 

on ZEISS arivis Pro and then filtered the results based on the position in 

the volume (shown as a spectrum). The clipping plane demonstrates the 

successful segmentation of the objects in the volume as obtained with the 

Deep Learning Trainer.

ZEISS arivis Storyboard capability helps you export impressive 

cinema-quality animations and visualizations with resolutions of up 

to 4k60 (4K at 60 fps).

Deep Learning training with the AI toolkit for 
ZEISS arivis Pro
The arivis AI toolkit is available for local AI-driven model training 

in ZEISS arivis Pro. It boasts a user-friendly graphical interface and 

a Deep Learning Trainer, which helps even inexperienced users 

to intuitively use advanced AI technology for their experiments, 

creating and training a Deep Learning model with a few clicks 

(see Figure 2).

You can annotate/label specific regions with ease thanks to the 

integrated drawing tool, which allows for ‘sparse annotations’ that 

require less time and effort than annotating the whole image. 

Monitoring Deep Learning training is simple and straightforward 

and can be done directly within ZEISS arivis Pro. Once trained, the 

model can be integrated into analysis pipelines or exported in the 

open ONNX format for sharing with colleagues and peers.

If you need to leverage the power of cloud computing or 

collaborate on analysis projects,  the ZEISS arivis Cloud provides 

additional access for these purposes.

https://www.arivis.com/

products/pro

https://www.arivis.com/

contact/talk-with-an-

expert

Visit ZEISS arivis Pro

Talk with an expert

https://www.arivis.com/products/pro
https://www.arivis.com/products/pro
https://www.arivis.com/contact/talk-with-an-expert
https://www.arivis.com/contact/talk-with-an-expert
https://www.arivis.com/contact/talk-with-an-expert


23The ZEISS arivis Scientific Image Analysis Platform

Figure 3: The arivis Pro VR toolkit includes support for OpenXRTM runtimes 

from all major VR headset manufacturers, which makes it not only the 

most compatible but also future-proof for next-generation hardware and 

emerging standards. Immerse yourself in your data!

Figure 4: Machine Learning for object classification directly inside the VR 

environment. Organoid imaging with ZEISS Lightsheet 7 by ZEISS Customer 

Center Oberkochen.

arivis Pro VR
The arivis Pro VR (formerly known as VisionVR) is an advanced 

toolkit that can be used as an add-on for ZEISS arivis Pro or as 

a stand-alone viewer to display real image data in virtual reality. 

With patented direct volume rendering techniques, it eliminates 

the need for complicated manual data conversion or cumbersome 

surface model creation. With the arivis Pro VR toolkit, you have 

the power to manipulate your digital image data directly with 

your hands, including moving, rotating, scaling, and shaping. 

This freedom from the keyboard and mouse, coupled with real-

world depth perception, allows you to intuitively mark, measure, 

classify, track, edit, and segment with precision. This efficient and 

interactive toolkit enables accurate proofreading, editing, tracking, 

and de novo segmentation of multi-dimensional images from 

various supported imaging instruments and systems. In the VR 

environment, you get a new perspective on your sample 

(see Figure 3).

For a most natural and comfortable viewing experience, the arivis 

Pro VR toolkit provides frame rates of at least 75 frames per second 

per eye and reacts to head movements in under 20 ms. This 

high-quality performance allows you to fully immerse yourself in 

the data without experiencing motion sickness. arivis Pro VR uses 

patented volume rendering techniques to achieve this performance, 

even with arbitrarily large datasets (see Figure 4). With arivis Pro 

VR, you’re positioned in a virtual theater to feel grounded and can 

‘walk-around’ to gain spatial context. If you get lost in the virtual 

environment, simply push a button or use a voice command to 

reset your view.

Advanced features enable users to control their environment, 

changing its visibility, transparency, and background color. And 

with full support of the OpenXR™ standard, arivis Pro VR is the 

most future-proof VR toolkit for scientific image analysis, working 

seamlessly with all major VR headset manufacturers.

Collaborative VR environment

With arivis Pro VR Collaboration mode, you can showcase your 

results to your colleagues in an engaging and interactive manner, 

regardless of your location. By sharing the same VR environment, 

you and your colleagues attending the VR session can collectively 

explore your sample. Using the same perspective, you can draw 

attention to areas of interest using Clipping and Laser Pointers to 

highlight structures and make new discoveries. This immersive and 

collaborative approach can revolutionize how you and your team 

analyze data.

Interactive measurement in VR

arivis Pro VR offers two versatile tools for precise measurement and 

counting. The Counting tool enables you to quickly place colored 

markers in your image, which arivis Pro VR will automatically count 

for you. Meanwhile, with the Measure tool, you can accurately 

measure distances, angles, or arbitrary path lengths. Save your 

measurements and counts as objects to further analyze in VR or on 

the desktop.

Edit and proofread tracks

The tracking function in arivis Pro VR enables you to import, 

visualize, and edit 3D tracks from any automatic analysis operation 

you created on your desktop in ZEISS arivis Pro. With the ability to 

interact with these tracks in a VR environment using your hands, 

you can cut, merge, or prolong them to refine the results from the 

automatic tracking algorithm. This feature is particularly helpful 

for images where two objects are close together, as it can help 

differentiate between them when the tracking algorithms struggle 

to do so.

A fully integrated software that displays real image 

data in an immersive VR environment.

https://www.arivis.com/products/pro/vr 

Learn more about arivis Pro VR

https://www.arivis.com/products/pro/vr 
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ZEISS arivis Hub
ZEISS arivis Hub, formerly known as VisionHub, empowers you to 

design and execute large-scale experiments that generate results 

from images, whether datasets are already stored or are being 

actively produced (see Figure 5). A virtual team of computational 

workers processes huge amounts of microscopy data by smartly 

utilizing processing cores in servers or workstations, coming to 

life whenever you need them. You can create customized and 

optimized workflows (with one or multiple pipelines) that extract 

valuable information from your image stores, and run them at scale 

to produce results faster, covering all levels of analysis. You can 

also choose from a range of standardized image analysis assays, 

harness AI for automated, reliable, repeatable, and speedy analysis, 

and easily share your findings with your peers. You can craft 

analysis pipelines in ZEISS arivis Pro and upload them to ZEISS arivis 

Hub, where others can vet and use them. Computing experts can 

leverage and parallelize their own innovative processing algorithms 

using convenient application program interfaces (APIs).

Figure 5: Intestinal organoid, well plate confocal Airyscan imaging with ZEISS Celldiscoverer 7. 3D visualization with ZEISS arivis Pro, high-content 3D 

analysis pipeline on ZEISS arivis Hub.

Benefits of the ZEISS arivis Hub

 � Register and browse image collections, experiments, and 

results.

 � Manage access for users and groups.

 � Import datasets into the arivis framework and archive originals.

 � Create experiments that produce results at scale.

 � Leverage computation onsite and offsite in servers or  

workstations.

 � Boost your throughput without worrying about budget with a  

scalable pricing model.

 � Implement quality checks into experiments for increased  

efficiency and validity.

Table 1: Benefits of ZEISS arivis Hub

Server or Cloud

Eliminate computing limitations Run experiments and jobs in parallel Screen compounds more rapidly

Leverage underutilized resources Burst through bottlenecks Using imaging to better diagnose 
defects

Get results faster Distribute computing resources and 
access them from anywhere

Instantly share information produced 
from images

Scalability Cost efficiency

https://www.arivis.com/products/pro/vr
Visit arivis Pro VR

https://www.arivis.com/products/pro/vr
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Figure 6: Examples of solutions that are powered by AI-trained models in ZEISS arivis 

Cloud. The image analysis can take place directly on the cloud, or the model exported for 

integration into a pipeline on local software for further analysis.

High-throughput and enterprise-level imaging science produce 

results across vast numbers of images and experiments. However, 

in many campuses and organizations, these results are isolated, 

making it challenging or extremely costly to perform powerful 

meta-analyses. The ZEISS arivis image analysis platform can be 

configured to expose spatially resolved results, summaries of 

results, and raw data contained by results objects to meta-analysis 

algorithms—including AI.

ZEISS arivis Cloud
ZEISS software experts developed a cloud-based solution to help 

researchers automate their image analysis, collaborate easily and 

thus solve their image analysis challenges. At the heart of ZEISS 

arivis Cloud is a Deep Learning toolkit (currently referred to as arivis 

AI toolkit)  that makes it simple for researchers to train models 

and analyze complex images without needing to code. ZEISS 

arivis Cloud makes Deep Learning accessible to everyone, and 

empowers biotech and pharma scientists to accelerate research and 

development and commercialization using advanced technologies.

With the arivis AI toolkit on ZEISS arivis Cloud, researchers can 

quickly and easily train their own AI models for image segmentation 

and analysis. Its push-button functionality makes it easy for anyone, 

even beginners. By using partial annotations and tweaking their 

AI-driven models, scientists can save considerable time by avoiding 

repetetive manual steps, while reducing human bias and gaining 

advanced insights from their experiments. 

ZEISS arivis Cloud allows for maximizing your computation 

resources white easily sharing results. You can create a customized 

application with a few clicks, based on your already-trained AI 

model. The model is easily exported for integration and further 

analysis on other ZEISS software such as ZEN or ZEISS arivis Pro.

ZEISS arivis Cloud enables scientists to leverage the experience of 

peers by referring to the user community and utilizing workflows 

and solutions already developed (see Figure 6). From routine 

applications to deep levels of advanced analysis, creating an 

automated application that is based on an AI-trained model is a 

simple and intuitive process. Coding is no longer a necessity to 

reach high-end analysis results that are reliable, reproducible, and 

which considerably shorten your time to market.

Benefits of the arivis AI toolkit

 � Saves time and streamlines analysis by reducing manual steps.

 � Reduces human errors and human bias for more  

accurate results.

 � Improves throughput for enhanced efficiencies.

 � Maintains quality and performance for reliable and consistent 

analysis.

 � Makes coding an option, not a necessity.

https://www.arivis.com/products/hub
Visit ZEISS arivis Hub

See how the cloud can help you 

collaborate, automate and advance our 

research with AI.

https://www.arivis.com/products/

cloud-ai

Learn more about ZEISS 
arivis Cloud

https://www.apeer.com/free-trial

Request a free trial of arivis AI 
on ZEISS arivis Cloud here

https://www.arivis.com/products/hub
https://www.arivis.com/products/cloud-ai
https://www.arivis.com/products/cloud-ai
https://www.apeer.com/free-trial
https://www.apeer.com/free-trial
https://www.apeer.com/free-trial
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To truly understand and appreciate the power of AI for image 

analysis, practical applications are key. This chapter shares various 

case studies demonstrating the diverse and practical ways in which 

AI can aid image analysis. Through these examples, you’ll see the 

potential impact and benefits that AI can bring to your imaging.

Analysis of FIB-SEM volume  
electron microscopy data
Focused ion beam scanning electron microscopy (FIB-SEM) is 

a powerful imaging tool that achieves resolutions of under 10 

nm and produces highly detailed 3D image volumes. FIB-SEM 

highlights the entirety of the cell, generating images dense with 

cellular features, structural edges, and varying pixel combinations. 

The complexity of these images makes it difficult to use standard 

image processing segmentation algorithms to detect many cellular 

structures of interest. Therefore, quantitative analysis of FIB-SEM 

data often relies on the tedious and time-consuming manual 

drawing of features of interest on 2D slices of a 3D image volume.

AI-assisted volume EM (vEM) analysis using Deep Learning 

approaches offer a way to move beyond reliance on manual 

annotation for segmenting cellular structures [1]. Such an approach 

was used to develop a cell-profiling workflow using neural network 

training and image analysis tools that are readily accessible to 

researchers and do not require coding.

The first step was training the Deep Learning model. Using the 

arivis AI toolkit on the ZEISS arivis Cloud platform, subsets of 

organelles (mitochondria and nucleus) within a FIB-SEM image 

of a HeLa cell (see Figure 1) were manually drawn and used to 

train neural network models to identify these large organelles 

successfully (see Figure 2). These arivis AI-trained Deep Learning 

Case studies

Figure 1: Overview of HeLa cell image set. The image set was collected 

using a ZEISS Auriga Crossbeam FIB-SEM. (a) A nm-resolution image volume 

of the HeLa cell. (b) Pixel intensities were inverted to achieve positive 

signals in a dark background. (c and d) 3D volumetric renderings of the 

image volume, which do not make sense without a positive signal in black 

background.

Figure 2: Generation of Deep Learning models for organelles using the arivis AI toolkit on the ZEISS arivis Cloud platform. (a) 

Mitochondria and (b) the nucleus were painted as individual classes for training.

https://www.arivis.com/products/cloud-ai
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Figure 3: Segmentation results from a Deep Learning trained model can 

predict the percent of cell volume for organelles.

Figure 4: Mitochondrial surface area-to-volume ratios are negatively correlated with the distance to 

membranes.

models were initially used to infer mitochondria and the nucleus 

in ZEISS arivis Pro before analysis pipelines were built to filter and 

improve the initial inferences into usable 3D segments.

Segmentation and measurements of organelles

The neural network models developed from the arivis AI training 

allowed the automated measurement of organelle volume (see 

Figure 3). ZEISS arivis Pro computes the volume for all 3D objects, 

making it easy to calculate the percentage of total cell volume 

occupied by each organelle (see Figure 3c). The profiling results 

were consistent with previous measurements, showing that 

mitochondrial volume is ~10% of the cytoplasm volume within 

HeLa cells [2].

Mitochondrial characterization and spatial classification

Once the organelles were segmented, their distribution and 

surface-to-volume ratios were characterized (Figure 4). Analysis 

pipelines in ZEISS arivis Pro computed the distances of mitochondria 

to cellular structures. While the distances of each mitochondrion’s 

center of geometry were not significantly correlated to the nuclear 

membrane (Figure 4c) or the plasma membrane (Figure 4d), the 

minimum distance of each mitochondrial center of geometry to 

either membrane did show a significant correlation (Figure 4e).

This method can be used with any cell structures that have been 

segmented and can measure distances between object surfaces or 

centers of geometry. It is also possible to scale this method using 

the ZEISS arivis Hub to allow the analysis of multiple cell image sets 

in parallel and produce automated, high-quality profiles.
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Initial 3D segmentation of nuclear pore complex regions

3D segmentation of nuclear pore complex (NPCs) regions was 

limited by the image resolution (100–150 voxels per pore) and the 

3D structure of each pore uniquely oriented to the curvature of the 

nuclear membrane. Extremely tedious annotation of the NPCs in all 

possible orientations would be required to segment and measure 

the nuclear pores. Instead, the relatively large (~400–2000 voxels) 

pockets under the pores were analyzed.

The under-NPC objects were used to derive objects representing 

the actual pores to create ground truths for a new 3D-aware Deep 

Learning neural network that can segment the NPCs directly 

(see Figure 5).

Figure 5: NPCs have variable density distribution 

across areas of the nucleus. Several processing 

steps were done to create masks of NPCs from the 

pocket objects. Taking the pocket objects (a), a 

binary masked image was generated (b), followed 

by a closing operation of the pockets to the 

nuclear membrane (c). Next, the nuclear membrane 

and pockets were used to mask the white space 

shown in panel c (d). These objects were then 

dilated (e). Masking using these objects enhances 

the visualization of NPCs (f).

Figure 6: Training a 3D-aware neural network for 

nuclear pore segmentation. Several processing 

steps were done to create masks of NPCs from 

the pocket objects. Taking the pocket objects, a 

binary masked image was generated, followed 

by the 3D-aware resampling in preparation for 

arivis AI training (a). The resulting CZANN model 

was used to create the probability map in ZEISS 

arivis Pro with the Deep Learning Reconstruction 

operator (b). This 3D stack was filtered using 

the ‘Preserve bright particles’ operator, and the 

objects were segmented using the Watershed 

algorithm with a strict threshold (c). In the 

following step, the smaller subset of the particles 

was expanded by region-growing, while the 

largest particles were split and filtered with the 

segment feature filter (d).

Once the segmentation of the NPCs was complete, the image stack 

and the corresponding NPC mask were rotated 30°, 60°, and 90° 

on the X and Y axes, and the resulting stacks were resampled to 

provide the 3D-aware augmented images of the 2D Deep Learning 

algorithm on the ZEISS arivis Cloud platform.

The trained model was used to segment the nuclear pores on the 

entire nucleus to characterize their spatial distributions (see Figure 

6). Approximately 80% of the total NPCs in the nucleus were 

successfully segmented.



29Case studies

Distribution/density analysis of nuclear pores

The segmented NPCs were used to view and quantify the 3D 

distribution of NPCs throughout the nuclear membrane using two 

approaches: (1) the ZEISS arivis Pro Distances operator and (2) the 

ZEISS arivis Pro Python application program interface (API) (see 

Figure 7). Both the ZEISS arivis Pro Distance operator and the kernel 

density Python script were capable of consistently identifying 

clusters of pores. Further characterization of the NPC distribution 

across the nuclear membrane found that NPC density is higher 

within the smaller nucleus section with higher curvature (see Figure 

7d). In contrast, the larger section with a lower curvature degree 

has more low-density regions for nuclear pores.

Notes
Original datasets imaged with a ZEISS FIB-SEM instrument and provided by Anna Steyer and Yannick Schwab, EMBL Heidelberg, Germany. 

Datasets first published in: Hennies J, Lleti JMS, Schieber NL, Templin RM, 1. Steyer AM, Schwab Y. 

AMST: Alignment to Median Smoothed Template for Focused Ion Beam Scanning Electron Microscopy 

Image Stacks. Sci Rep. (2020) 10(1):2004. doi: 10.1038/s41598-020-58736-7.

Figure 7: NPCs have variable density distribution 

across areas of the nucleus. (a) The average 

distance of each nuclear pore object to the 

nearest eight nuclear pore objects was measured 

using the Distance operator in ZEISS arivis Pro. 

The nuclear pore objects were then color-coded 

according to these distance measurements to 

represent the density of nuclear pores across 

the nuclear membrane. (b) As an alternative 

method of analyzing the distribution of the pore 

objects, the densities of NPCs were determined 

by taking the 3D centroid of each NPC object 

and calculating a Gaussian kernel density, with a 

kernel radius of 0.1 µm, using a custom Python 

script. (c) The density distribution of NPCs is 

significantly different across separate areas of 

the nucleus. Sectioning the nucleus into two 

sections, a larger and a smaller section, based on 

the nuclear cleavage furrow, reveals significant 

differences in kernel density scores. (d) A two-

tailed t-test was performed to calculate the 

significance of differences between the kernel 

density scores in these two sections of the 

nucleus.

The benefits of Deep Learning for analysis of FIB-SEM 

imaging

The combination of traditional and Deep Learning algorithms with 

prior biological knowledge can produce powerful workflows, as 

demonstrated in this chapter. By generating objects in the vicinity of 

NPCs, we can more accurately identify nuclear pores in 3D regions, 

which may not be clearly visible through 2D analysis alone. These 

3D objects, representing nuclear pores, can then serve as ground 

truths for neural network training in Deep Learning. Overall, this 

approach can lead to more precise and comprehensive analyses of 

cellular structures.

https://www.nature.com/articles/s41598-020-58736-7.epdf?sharing_token=fS9hyURLF4NntjGt1_P3_9RgN0jAjWel9jnR3ZoTv0OchLv0hCzttyCsLfK_u3aFZ_5QfoE5-1vWpFhcW1bMph2UZ4XixWGzeS1JyoxIbPkqJDT9guhuXEavhJeLdNqI9RIA8WSf5kxJmLVa2ZG41eDffNYPm5vZSqtrSUFHs9g%3D
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Analysis of mitochondria using Deep Learning
To understand the effects of hypoxic conditions on mitochondria 

in brain tissue, researchers from the Barrow Neurological Institute, 

Phoenix Children’s Hospital used the ZEISS arivis Pro pre-trained 

Deep Learning model to segment all the mitochondria objects on 

the hippocampal tissue section. Exposure to hypoxic conditions 

means the mitochondria in these tissue samples have varying 

morphology: some appear normal, and some have ‘swollen’ 

morphology. Creating one Deep Learning model to recognize all 

mitochondria phenotypes in a single step posed an additional 

challenge.

Training the Deep Learning model

30 TEM serial sections were used with 309 mitochondria objects, 

annotated manually with the ZEISS arivis Pro 3.6 drawing tool to 

create ground truths for training the Deep Learning model (see 

Figure 8). The U-net model, with architecture very similar to the 

original publication [3], was used.

Figure 8: Manual annotation of control and 

swollen mitochondria phenotypes (in yellow) 

of TEM images of hippocampus tissue sections 

to create ground truths for training the Deep 

Learning model. Original imaging data was 

kindly provided by Dr. Wendy Bautista, MD PhD, 

Barrow Neurological Institute, Phoenix Children’s 

Hospital.

Figure 9: Deep Learning segmentation and classification of mitochondria objects. Left image shows 

manually segmented mitochondria (yellow objects) and the Deep Learning inference results (cyan 

objects) overlayed to illustrate the accuracy of the predictions. Right image shows the spectrum of the 

mitochondria phenotypes, which is reflected in the color of the corresponding objects [purple (normal) 

to red (extremely swollen)]. The phenotype is quantified as the mean intensity of the object divided by 

its volume and stored in the custom feature value. Original imaging data was kindly provided by Dr. 

Wendy Bautista, MD PhD, Barrow Neurological Institute, Phoenix Children’s Hospital.

Using Deep Learning to segment and classify mitochondria

The Deep Learning model was applied to the whole dataset in 

ZEISS arivis Pro 3.6 for automated segmentation (see Figure 9a). 

ZEISS arivis Pro has an extensive list of quantitative features that 

characterize each object. In addition, it is possible to create custom 

features or import them from external sources. A custom object 

feature that computes the ratio of the mean intensity of each 

object to its volume was created to classify the objects into the 

‘control’ and ‘swollen’ groups. For visualization purposes, each 

object was color-coded according to the value of the mitochondria 

phenotype custom feature (see Figure 9b).

Comparing the Deep Learning segmentation with the manual 

segmentation (see Figure 9) shows the accuracy of the Deep 

Learning model for segmenting mitochondria and how this 

segmentation, combined with the ability to create custom 

object features, can be used to classify individual mitochondrial 

phenotypes, simplifying the investigation of the effects of hypoxic 

conditions on mitochondria in brain tissue. 

Organoid analysis
Organoids are artificial three-dimensional model systems that can 

imitate the cellular composition and tissue architecture of organs 

while being easier to maintain and manipulate experimentally, 

making them ideal tools for developmental biology research.

Intestinal (gut) organoids are indispensable tools for studying 

both normal gut development and the mechanisms that lead 

to morbidities (e.g., inflammatory bowel disease). The Wnt 

pathway is a well-known signaling pathway regulating intestine 

development and maintenance. The functions and effects of Wnt 

are very intricate and context-dependent, with Wnt contributing 

to maintaining healthy tissue stem cells and the transition and 

differentiation of stem cells into mature enterocytes (intestinal 

tissue cells). However, excessive Wnt activity (e.g., by genetic 

mutations) contributes to intestinal cancer.

Investigation of Wnt inhibition on organoid formation

To study the effect of Wnt inhibition, intestinal stem cells equipped 

with fluorescent proteins Histone2B-RFP and Mem9-GFP to mark 

cell nuclei and membranes were allowed to grow to organoids for 5 

days in the presence or absence of Wnt signaling pathway inhibitor 

IWP-2. Organoids were then fixed and antibody-stained for aldolase 

B, a marker for differentiated enterocytes, and counterstained with 
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Figure 10: Imaging of Organoids. (a) Overview scan of organoids (widefield). (b) Identification of areas of interest. (c) Detailed confocal scan using Airyscan 

detector. The overview scan was performed with a 2.5x magnification in camera-based widefield mode. For detailed scans (20x magnification), image stacks 

spanning the complete organoid depth were captured in confocal mode using the Airyscan detector.

DAPI (for nucleus detection).

Image acquisition was performed using a confocal ZEISS 

Celldiscoverer 7 that combines widefield and confocal imaging 

modes. Single organoids were acquired at 20X magnification with 

image stacks spanning the complete organoid depth.

ZEISS arivis Pro

The images were analyzed using ZEISS arivis Pro with Machine 

Learning segmentation performed to segment the outer organoid 

cell layer. Next, the organoid lumen was determined by filling 

inclusions in the organoid cell layer segmentation. Nuclei were 

segmented with the blob finder function from H2B-RFP and DAPI 

channels. Nuclei within the organoid cell layer and the organoid 

lumen were separated into two object groups based on object 

distances to the organoid lumen. The cell bodies were segmented 

via regions growing from nuclei objects within the organoid cell 

layer. Finally, all object groups were stratified for single organoids to 

enable better statistical analysis.

The validity and quality of the different segmentations applied 

during the analysis were checked. The organoid cell layer and 

organoid lumen were segmented with the Machine Learning 

segmenter. Employing Machine Learning leads to superior 

segmentation results compared to conventional threshold-based 

segmentation, allowing discrimination between cells in the cell layer 

(included in the objects) and lumen (excluded from the objects) 

based on complex image texture (see Figure 11a).

Figure 11: Organoid cell layer and lumen segmentation. (a) The cell layer overlay is shown in green, and the lumen overlay in yellow. (b) Nuclei in organoid 

cell layer and lumen. Cell layer nuclei are shown in red, and luminal nuclei in yellow. (c) Cell bodies in the organoid cell layer. Cell layer nuclei are shown in 

red, and cell layer cell bodies are shown in green.

The ZEISS ZEN (blue edition) module ‘Guided Acquisition’ was 

used to acquire many individual organoids. This is an automated 

imaging workflow consisting of three parts. A large overview scan 

with a low magnification (Figure 10a), an image analysis pipeline to 

identify areas of interest, in this case, individual organoids on the 

overview image (Figure 10b), and a detailed scan of all identified 

positions (Figure 10c).

Cell nuclei were segmented with blob finder segmentation, 

allowing high-quality separation of nuclei despite them being 

densely packed in 3D and despite intensity variations. By setting 

up relationships between the organoid cell layer and lumen object, 

nuclei were then further separated into cell layer nuclei and luminal 

nuclei (see Figure 11b). Cell bodies were segmented by region, 

growing from cell layer nuclei. By object filtering, they were 

restricted to the organoid cell layer (see Figure 11c).

Wnt inhibition affects the morphology of organoids

Analysis of organoid morphology showed a trend for larger 

volumes and particularly a larger spread of volumes in the control 

group, suggesting that Wnt inhibition interferes with the proper 

growth of the spheroids (see Figure 12). However, none of these 

trends were significant in a statistical t-test.
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Figure 12: Wnt inhibition impacts morphology of organoids. Overview images of organoids treated without (a) and with (b) Wnt inhibitor. The images 

show that Wnt inhibition changes the morphology of the organoids, including size and shape. Control-treated organoids are larger and have an irregular 

shape. (c) The roundness of full organoids. Single data points, mean, and standard deviation are depicted. p-value from statistical t-test is shown.

The control-treated organoids formed more amorphous shapes, 

while organoids treated with Wnt inhibitor remained spherical. 

ZEISS arivis Pro offers several morphological parameters to analyze 

such observations. Statistical analysis of ‘roundness’ showed a 

significant drop in control-treated samples (see Figure 12c). Thus, 

Wnt inhibition indeed interferes with the formation of amorph 

organoid shapes.

Cell numbers in different organoid compartments

The number of cells in the different organoid compartments were 

analyzed based on nucleus object counts. There was a significant 

increase in cell numbers for control-treated organoids compared 

to organoids exposed to Wnt inhibition (p < 0.05 each in statistical 

t-tests), indicating that Wnt inhibition interferes with proper 

organoid outgrowth.

Figure 13: Localization of aldolase B expression in the organoids. (a) Aldolase B expression (gray) is localized to entire cell bodies (green) rather than the 

nuclei (red). (b) Total organoid aldolase B expression. Single data points, mean, and standard deviation are depicted. p-value from statistical t-test is shown. 

(c) Average cellular mean aldolase B intensity. Single data points, mean, and standard deviation are depicted. p-value from statistical t-test is shown.

Determining aldolase B-positive cells as an  

alternative read out

More realistically, cells are either ‘positive’ or ‘negative’ for aldolase 

B, as can be observed in a typical organoid cross section (see Figure 

14). Therefore, a more suitable analysis strategy stratifies cells 

into aldolase B-positive and -negative groups, then evaluates the 

fraction of positive cells within an organoid.

Using a mean pixel intensity of 15 as a threshold for aldolase 

B-positive cells, positive and negative cells were generated that 

match well with the visual impression of aldolase B distribution 

in the example cross section (see Figure 14). Results are shown 

as total positive cells per organoid (see Figure 14b) and as the 

percentage of positive cells per organoid (see Figure 14c). Again, 

control-treated organoids had significantly more aldolase B-positive 

cells, indicating better organoid maturation.

Aldolase B is a marker for enterocyte differentiation and mainly 

localizes to the cytosol, making the cell body objects the best 

suited for analysis (see Figure 13a). Using ZEISS arivis Pro to extract 

channel intensities from different hierarchical layers, aldolase B 

expression was measured for the complete organoid (see Figure 

13b), and the single-cell mean aldolase B intensities measured 

independently on every cell (see Figure 13c). In both cases, there is 

a strong and significant increase (p < 0.001 in statistical t-tests) in 

organoids that were mock-treated compared to organoids treated 

with Wnt inhibitor, adding further evidence that Wnt inhibition 

interferes with organoid maturation.
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Figure 14: Determining aldolase positivity. (a) Localization of aldolase B expression in the organoids. Aldolase B expression (grey) is localized to the entire 

cell bodies (green) rather than the nuclei (red). (b) Number of aldolase B-positive cells per organoid. Single data points, mean, and standard deviation are 

depicted. p-value from statistical t-test is shown. (c) Percentage of aldolase B-positive cells per organoid. Single data points, mean, and standard deviation 

are depicted. p-value from statistical t-test is shown.

Summary

This study highlights how combining a ZEISS Celldiscoverer 7 and ZEISS 

arivis Pro for image analysis allows easy analysis of organoids and can 

help uncover biological insights, such as the role of Wnt signaling in 

intestinal organogenesis. Only 30 organoids per sample were analyzed, 

which is insufficient for a professional study and statistically relevant 

conclusions. This kind of ‘real-world’ use case helps users to learn about 

image analysis strategies they can use for their data. 

Microscopy and Deep Learning for 
neurological disease research
Microscopy is one of the primary methods used to understand 

neurological diseases, such as Parkinson’s disease, by studying 

neural circuits. By examining the cellular mechanisms that drive 

synapse formation and regulate synapse composition, researchers 

can identify patterns and rules necessary for establishing neural 

circuits. Mouse models are often used to investigate the generation 

and function of these circuits, which are relevant to various human 

diseases.

This analysis involves examining dendritic spines and neuronal 

projections to understand neural circuits. The sample used for 

this study was provided by R. Thomas and D. L. Benson from 

Icahn School of Medicine at Mount Sinai, New York, USA. Primary 

neurons expressing tdTomato were isolated from the mouse brain 

and plated in a 96-well plate for microscope imaging. 3D z-stack 

images were captured using a ZEISS Cell Discoverer 7 microscope 

with LSM 900 and Airyscan 2, equipped with a 50x/1.2 water 

objective and 0.5x Tubelens. A 3D z-stack image from one of 

the wells clearly displays the reddish-yellow-colored neuronal 

projections and dendritic spines that need to be segmented 

(see Figure 15).

Figure 15: A four-channel microscopy image of 

a mouse brain with fluorescence of various labels. 

(a) Full image, and (b) a single-channel image of 

tdTomato that highlights the neuron structure 

requiring segmentation for dendritic spines and 

neuronal projections. (c) A zoomed-in view of a 

selected region from panel b, where yellow arrows 

indicate some dendritic spines, which are small 

protrusions from the neuronal projections.
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Separating dendritic spines and neuronal projections with 

Deep Learning

A Deep Learning model must be trained to separate spines and 

neuronal projections. Deep Learning is superior to conventional 

Machine Learning when dealing with complex images, as is the 

case here, where spines and neuronal projections appear similar in 

images.

A Deep Learning-based semantic segmentation model was trained 

on ZEISS arivis Cloud using the arivis AI toolkit. The objective was 

to recognize two classes, namely dendritic spines and neuronal 

projections, in addition to the background. To create a ground truth 

for each of the three classes, twelve random slices were selected 

from the z-stack and partially annotated.

Figure 16: The arivis AI training interface on the ZEISS arivis Cloud with three defined classes for segmentation: projections (yellow), spines (green), and 

background (dotted purple). The inset image showcases a zoomed-in area with labeled classes representing each category’s ground truth. It is important to 

note that the image is partially labeled, focusing on regions that provide useful information for the Deep Learning model.

The annotation process involved using a digital paintbrush of 

different colors to mark respective pixels for each class. In this case, 

neuronal projections were painted in yellow, dendritic spines in 

green, and the background in dotted purple (see Figure 16).

To refine the trained model, initial results were visually inspected 

and annotations added to indicate areas where the model was 

unsuccessful. This iterative process is crucial in data-centric 

model training, where the expert’s input is a vital part of the 

workflow. The iterative training process continued until the subject 

matter expert was content with the result. The model was then 

downloaded and integrated into an image analysis pipeline that 

involves segmentation followed by object analysis, utilizing the 3D 

toolkit in ZEN. Figure 17 shows the segmented dendritic spines 

overlaid on the tdTomato fluorescence image.

How microscopy and Deep Learning can aid neurological 

research

Microscopy and Deep Learning are valuable tools in Parkinson’s 

research, allowing researchers to study neural circuits and 

understand the cellular mechanisms that regulate synapse 

formation and composition. A Deep Learning-based semantic 

segmentation model was trained to separate dendritic spines and 

neuronal projections using 3D z-stack images captured from a ZEISS 

Cell Discoverer 7 microscope. An iterative process involving data-

centric model training was employed to refine the model before 

integrating it into an image analysis pipeline utilizing the 3D toolkit 

in ZEN. 

The successful segmentation of dendritic spines using the trained 

model demonstrates the effectiveness of Deep Learning in complex 

image analysis and its potential to contribute to future neurological 

disease research.
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Figure 17: (a) Single-channel image of tdTomato highlighting neuron structure; same as Figure 15b. (b) Dendritic spines segmented in blue and overlaid on 

the image in panel a. (c) Inset image zooms in on a region from panel b to show clear segmentation of spines.

Improving microstructure analysis of 
aluminum oxide with Deep Learning

The importance of investigating the microstructure of 

aluminum oxide

Aluminum oxide (Al2O3) is a highly versatile material with excellent 

mechanical, electrical, and thermal properties. Its high resistance to 

wear, corrosion, and oxidation further contributes to its widespread 

use. The microstructure of aluminum oxide, which includes the 

size, shape, and distribution of its grains, inclusions, and grain 

boundaries, can significantly impact its physical and mechanical 

properties. For instance, the size and distribution of the grains 

can affect the strength, toughness, and hardness. The grain 

boundaries can influence its behavior under different conditions, 

such as temperature, stress, and corrosion. Thus, investigating 

the microstructure of aluminum oxide can help researchers and 

engineers optimize its properties for specific applications and 

understand its behavior under varying conditions.

Segmentation of aluminum oxide grains: Machine Learning 

vs. Deep Learning

The efficiency of conventional Machine Learning and Deep Learning 

approaches for image segmentation of aluminum oxide grains 

were compared using images collected from a polished aluminum 

oxide sample (courtesy of Bernthaler group at Hochschule Aalen). 

Images were captured using a ZEISS Crossbeam 550 focused ion 

beam scanning electron microscope with a pixel size of 0.03 μm x 

0.03 μm and 2048 x 1536 pixels in x and y dimensions. 

A backscattered electron detector provided the necessary contrast 

between the aluminum oxide grains and grain boundaries, where 

grain boundaries appear darker than the grains. A single random 

image from the image stack was selected for training. The image 

was partially annotated on the ZEISS arivis Cloud platform, where 

pixels corresponding to the grains, grain boundaries, and inclusions 

were painted using a digital pen to define the ground truth 

(see Figure 18).

Figure 18: Aluminum oxide grains partially annotated on the ZEISS arivis 

Cloud platform for Machine Learning and Deep Learning training. The green 

areas indicate the aluminum oxide grains, the blue outlines correspond to 

the grain boundaries, and the red areas represent inclusions and pores.
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Figure 19: Conventional Machine Learning 

settings in ZEN for the aluminum oxide grain 

segmentation training. ‘Deep Features 64’ setting 

extracts 64 features from the training regions, and 

the ‘Conditional Random Field’ postprocessing 

refines the segmentation result by incorporating 

contextual information.

The annotations were used to train a Deep Learning model using 

the arivis AI toolkit on the ZEISS arivis Cloud platform. arivis AI 

employs the widely recognized U-net architecture [4] for image 

segmentation but with encoder and decoder modifications to 

increase speed and accuracy.

Additionally, the annotations were exported to ZEN for use as 

ground truth labels for conventional Machine Learning training. 

Features from the training regions were extracted using the ‘Deep 

Features 64’ setting (see Figure 19). This setting extracts 64 features 

by applying ‘layer 1’ from the VGG19 network [5], pretrained on 

over 14 million images from the ImageNet database. It’s important 

to note that no Deep Learning training occurs during the Machine 

Deep Learning outperforms Machine Learning for grain 

segmentation

The results from both the Machine Learning and Deep Learning 

segmentation, respectively, for a random image in the dataset 

are shown in Figure 20. Similar to the training annotations, the 

segmentation result shows aluminum oxide grains in green, grain 

boundaries in blue, and inclusions in red. While the Machine 

Learning segmentation (Figure 20b) appears to be acceptable at 

first glance, many discontinuous grain boundaries are observed on 

closer inspection (Figure 20c). This is due to the inability of the pre-

Learning training process. Instead, the pre-trained Deep Learning 

network is being used to extract features, which then serve as input 

to a conventional Machine Learning algorithm, Random Forest. 

engineered features to properly present the grain boundary features 

to the Machine Learning algorithm, despite being pre-trained on 14 

million images. Any grain analysis using this approach will lead to 

an overestimated grain size distribution. Feature learning via Deep 

Learning training helps here, as it can learn the appropriate features 

needed to represent the grain boundaries accurately. Deep Learning 

successfully segmented the grain boundaries (Figure 20d), whereas 

conventional Machine Learning failed (Figure 20c).

https://github.com/zeiss-microscopy/OAD/blob/

master/Machine_Learning/Feature_Extractors/

feature_extractors.md

Discover further information on the 
features used in ZEN

https://github.com/zeiss-microscopy/OAD/blob/master/Machine_Learning/Feature_Extractors/feature_extractors.md
https://github.com/zeiss-microscopy/OAD/blob/master/Machine_Learning/Feature_Extractors/feature_extractors.md
https://github.com/zeiss-microscopy/OAD/blob/master/Machine_Learning/Feature_Extractors/feature_extractors.md
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Figure 20: (a) Electron microscopy image of aluminum oxide microstructure. (b) Segmentation result of (a) obtained by applying a conventional Machine 

Learning model trained using the annotations from Figure 18. (c) A close-up of the area outlined by the square in (b). Although conventional Machine 

Learning methods produce results that appear satisfactory, upon closer examination, it becomes evident that numerous grain boundaries are not 

continuous. As a result, any attempt to measure grain size using this image would result in erroneous findings that are biased toward larger grain sizes. (d) 

Segmentation result of (a) obtained by applying a Deep Learning model trained using the annotations from Figure 18. (e) A close-up of the area outlined by 

the square in (d). Deep Learning segmentation resulted in continuous grain boundaries, which will yield more reliable grain size measurements.

Segmentation is often an intermediate step in a bigger analysis 

goal, such as grain size analysis. Figure 21 shows the results from 

grain size analysis using the respective segmented images from 

Machine Learning and Deep Learning approaches. The analysis was 

performed using the ZEN software by assigning all enclosed regions 

within continuous grain boundaries to a specific grain.

The Deep Learning-based segmentation produces continuous grain 

boundaries that accurately represent the true grain structure in the 

aluminum oxide micrograph. However, the porous grain boundaries 

from the Machine Learning segmentation resulted in the bulk of 

the image being detected as a single grain (shown as the red region 

in Figure 21b). Any subtle changes in image quality can result in 

significant differences in quantitative results if image segmentation 

is inconsistent. Deep Learning has better generalization ability 

and can forgive image variability to some extent, making it ideal 

for tasks where even subtle image variability is expected, and for 

applications that need highly reproducible results with minimal 

human intervention.

Figure 21: (a) Electron microscopy image of aluminum oxide microstructure, identical to that shown in Figure 20a. (b) Grain size analysis using the image 

segmented by conventional Machine Learning incorrectly assigns the bulk of the pixels to a single large grain, shown in red. (c) Analysis using the Deep 

Learning-segmented image demonstrates that the grains are correctly identified, offering more precise grain size distribution data when compared to 

Machine Learning.
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Figure 22: (a) Phase contrast image of HeLa cells captured at 10x magnification. (b) Entropy-filtered image revealing subtle variations in texture and tone 

from panel (a). (c) Segmented regions containing cells against the background after applying a threshold to the image in (b). Note that while the cellular 

region is segmented, individual cells are not separated.

Enhancing single-cell analysis with instance 
segmentation in phase contrast microscopy 
images
Cell tracking is a commonly used assay in biotech research, as 

it provides valuable insights into a wide range of diseases and 

conditions. For example, it can be used to monitor the behavior of 

cancer cells, including their proliferation, migration, and invasion, 

thus helping researchers to develop new cancer therapies and 

evaluate the effectiveness of existing treatments. While fluorescent 

labeling facilitates cell segmentation and tracking, researchers 

often choose to image cells in brightfield or phase contrast. This is 

because these imaging techniques can provide valuable information 

about cell morphology and structure, including the size, shape, 

and texture of the cell. Also, they do not require any additional 

preparation of the cells, such as labeling or staining, which means 

that the cells can be imaged directly in their natural state, without 

being altered by the labeling process. This is particularly important 

for studying certain cellular processes or phenomena, as adding 

fluorescent labels may interfere with or alter the behavior of the 

cells.

The challenges of segmenting brightfield micrographs

The benefits of object-based segmentation in biomedical 

applications

Both conventional Machine Learning and Deep Learning techniques 

(such as the use of U-net [4]) share a similar limitation: they cannot 

separate individual cells, which is essential for accurate tracking 

algorithms. While these methods may produce satisfactory results 

by defining an additional border class, a more reliable approach 

is to use object-based segmentation algorithms, also known as 

‘instance segmentation’ in the AI community. This method is more 

effective in accurately segmenting individual cells, allowing for 

more precise tracking and analysis of their behavior.

Instance segmentation is a computer vision technique used for 

identifying and outlining individual objects within an image. Unlike 

semantic segmentation, which assigns a single label to each pixel 

in an image, instance segmentation identifies and separates objects 

However, segmenting cells in brightfield and phase contrast images 

can be challenging, primarily because the average grey level of the 

cells is often equal to the average grey level of the background. This 

makes it impossible to segment cells using conventional threshold 

techniques. One solution is to apply digital filters to generate 

filtered images that can then be segmented using threshold 

techniques. For example, an entropy filter can highlight regions of 

high texture (see Figure 22b), which can help separate cells from 

the background. 

However, this approach fails at properly separating cells from each 

other (see Figure 22c). Watershed-based separation is often used 

to address this issue, but it can lead to inconsistent results between 

frames, potentially making cell tracking discontinuous between 

frames.

based on their unique characteristics, such as shape, size, and color. 

It is particularly useful for biomedical applications, such as cell 

segmentation in brightfield and phase contrast microscopy images.

Instance segmentation of HeLa cells to track their movement, 

shape and size

In this case study, HeLa cells grown over time in a multi-well plate 

were imaged under phase contrast mode using a ZEISS 

Celldiscoverer 7 microscope with a Plan-Apochromat 20X/0.95 

objective and 0.5x Tubelens yielding an effective magnification 

of 10x. To study the cells at a single-cell level, including tracking 

over time, they were segmented using the instance segmentation 

approach. The arivis AI toolkit on the ZEISS arivis Cloud platform 

was used to annotate the training images (see Figure 23).
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Figure 23: A screenshot of the annotation interface from arivis AI displaying a partially annotated training image of HeLa cells. The cells are clearly labeled 

in red, while the background is labeled in dotted purple.

The arivis AI toolkit offers tools for both semantic segmentation 

and instance segmentation. A semantic model was initially trained 

only for demonstration purposes to illustrate the differences 

between the semantic and instance approaches. Figure 24 shows 

the input image and its corresponding semantic segmented images. 

The segmentation successfully distinguished the cellular region 

and the background, but failed to separate the cells. Semantic 

segmentation is adequate if only the area fraction of the cellular 

region is required, but instance segmentation is the appropriate 

tool for tracking and extracting individual cellular information.

There are various Deep Learning-based algorithms available for 

instance (object-based) segmentation such as a modified version 

of U-net, but the most widely known algorithms are Mask R-CNN 

[6] and Mask2Former [7]. arivis AI uses a Mask2Former approach, 

which has been adapted to work with microscopy data and is 

capable of segmenting images with multiple input channels. 

The loss function is also customized for training with partial 

annotations, further improving the efficiency and accuracy of the 

training process. The annotations shown in Figure 23. were used 

to train the initial instance model, and further annotations were 

added based on the results to better segment regions where 

the model encountered difficulty, primarily the regions with high 

density of cells. This data-centric approach saves time by focusing 

on annotating challenging areas instead of wasting time on simple 

ones. Figure 25 illustrates the results of instance segmentation on 

the same input image as in Figure 24. The instance segmentation 

effectively separated individual cells, allowing for the tracking of 

cells in the time series image dataset.
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Figure 25: (a) Phase contrast 

image of HeLa cells captured at 

10x magnification. (b) Result of 

instance segmentation using the 

Mask2Former Deep Learning method, 

clearly separating individual cells and 

enabling direct use of the result in 

applications such as cell tracking.

All images from the time series underwent segmentation using the trained 

model. The resulting masks were imported into ZEISS arivis Pro for further 

analysis, where cells were tracked and followed individually throughout the 

time course. Tracking was made easy by the well-separated, segmented masks 

generated through instance segmentation. Even cell division events were 

detectable in tracking, with daughter cells retaining their tracking identity. 

Figure 26c displays the first image in the time series with tracks overlaid to 

show the cell center positions at each time point.

Figure 26: (a) Phase contrast image of HeLa cells captured at 10x magnification. (b) Result of instance segmentation using the Mask2Former Deep Learning 

method. (c) Result of the tracking algorithm showing cell tracks overlaid on the original image from (a). The tracking analysis was performed using ZEISS 

arivis Pro.

While this particular use case focused on the use of instance 

segmentation for cell tracking, the instance segmentation approach 

can provide insights from images in many other ways. For example, 

the size and shape of cells can provide crucial information about 

their state and behavior, enabling the monitoring of the effects of 

various treatments on cells. As instance segmentation separates 

Figure 24: (a) Phase contrast 

image of HeLa cells captured at 

10x magnification. (b) Semantic 

segmentation result using a U-Net-

based Deep Learning architecture. 

The pink area represents the cellular 

region, which has been successfully 

segmented from the background. 

However, it should be noted that 

individual cells are not separated by 

this approach.

individual cells, they can be sorted based on size (see Figure 27b) or 

shape (see Figure 27c) with ease.
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Figure 27: (a) Phase contrast image of HeLa cells captured at 10x magnification. (b) Cells are color-coded by size, with smaller cells in green and larger cells 

in pink. (c) Cells color-coded by shape, with rounded cells in green, less rounded cells in purple, and cells with medium sphericity in cyan.

In summary, instance segmentation enables the easy segmentation 

and separation of individual objects, allowing for various insights 

to be extracted through object tracking and sorting based on size 

and shape, among other methods. arivis AI’s data-centric approach 

saves time and ensures efficient annotation of complex features for 

instance segmentation model training. The resulting trained model 

can then be used in end-to-end applications such as cell tracking.
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This book provided a comprehensive overview of the importance of 

AI, and how to use the technology for image analysis, and showed 

a diverse array of use cases.

The first chapter introduced the reader to the concept of AI and its 

significance in research, explaining how AI had become increasingly 

important in the field of image analysis. It introduced AI, Machine 

Learning, and Deep Learning, emphasizing that Deep Learning 

is the right technology for image analysis tasks with challenging 

images. The chapter also introduced the suite of software products 

by ZEISS that makes AI accessible to everyone.

The second chapter focused on image segmentation. It provided 

a historical overview of various image segmentation approaches, 

including Otsu thresholding, the Watershed algorithm, conventional 

Machine Learning, and Deep Learning. It also explained how 

conventional Machine Learning models could be trained in ZEN 

and Deep Learning models could be trained using the arivis AI 

toolkit. The chapter also highlighted several improvements to Deep 

Learning in the arivis AI toolkit, emphasizing the importance of 

data-centric model training. It also provided extra tips to enhance 

the efficiency of image segmentation.

In the third chapter, the book discussed how AI tools could be 

used in routine image analysis applications. Integration of AI was 

demonstrated using examples from microscopy, such as tissue and 

blood sample analysis for atypical cells and cell morphologies. 

Furthermore, it showed how AI tools help with repetitive and time-

consuming tasks and eliminate human error. The chapter reviewed 

the ZEISS Labscope imaging app and showed how its AI modules 

benefit these applications.

The fourth chapter focused on using trained AI models and the 

image analysis pipelines in ZEISS arivis Pro. It explained how Deep 

Learning models trained using the arivis AI toolkit on ZEISS arivis 

Cloud could be imported into ZEISS arivis Pro to automate entire 

image analysis processes and push the boundaries of analysis 

complexity. The reader was informed about how these AI-driven 

models enable a new level of automation in image analysis, which 

Summary
results in increased throughput, reduced human bias, and shorter 

time required to generate reproducible and reliable results.

Since the use of AI technology had become increasingly significant 

in science and industry, the fifth and final chapter of the book 

centered on a few pertinent case studies. These case studies 

showcased how AI-enabled analysis of microscope image datasets 

provided new and faster answers to research or engineering 

problems. One of the case studies demonstrated the potential 

application of AI tools in segmenting and measuring organelles, 

characterizing mitochondria, and classifying the spatial distribution 

of nuclear pores using a volumetric FIB-SEM dataset. Another 

case study demonstrated how AI image analysis assisted in 

understanding Wnt inhibition in organoid formation. Other case 

studies demonstrated similar benefits in a diverse range of scientific 

fields. For example, segmentation of neurons into dendritic 

spines and neuronal projections for neurological disease research; 

segmentation of the microstructure of aluminum oxide in assessing 

specimen viability for materials science applications; and accurate 

segmentation of cells to help distinguish them in phase contrast 

microscopy.

This book presented a comprehensive guide to the use of AI 

technology in image analysis.

Looking ahead, several emerging trends and future directions 

in the field of AI for image analysis are worth noting. One is the 

application of AI to volumetric image data, such as CT and MRI 

scans. AI techniques are being developed to automatically detect 

and segment abnormalities in these images, such as tumors or 

other lesions. Another promising area is the use of AI for real-time 

image analysis, where AI algorithms can analyze images as they 

are being acquired. This will give immediate feedback and enable 

real-time adjustments to experimental protocols. Additionally, as AI 

techniques become more sophisticated and are trained on larger 

and more diverse datasets, we can expect to see more accurate 

and reliable analysis of complex images, such as those with multiple 

overlapping objects.
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For readers looking to apply AI technology to their own image 

analysis, here are a couple of additional tips and best practices to 

keep in mind.

 � Carefully consider the problem and determine whether AI is 

the appropriate tool to use.

 � Have a clear understanding of the data and ensure that there 

is sufficient high-quality data to train the models.

 � Select the AI tools carefully, as different algorithms may be 

better suited to different types of data and analysis tasks. For 

example, the instance segmentation algorithm is better suited 

to segment individual cells separately, while the semantic  

segmentation algorithm is more appropriate when cells need 

to be segmented collectively from the background.

 � Continually evaluate and validate the models and incorporate 

feedback from domain experts to ensure accurate and  

meaningful results.

In closing, we thank readers for their time and interest in this book. 

We hope it provided a useful introduction to the exciting  

possibilities of AI technology for image analysis and inspired readers 

to explore these techniques further in their own research and 

work. AI is a rapidly evolving field, and there is much to learn and 

discover. By continuing to learn and explore, we can unlock new 

insights and capabilities in image analysis that have the potential to 

revolutionize many fields, from healthcare to materials science and 

beyond.
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ZEISS arivis Family of Products
The ZEISS arivis image analysis platform offers scalable software 

tools on a desktop, server, and in the cloud. With the ZEISS arivis 

product portfolio, researchers can easily perform advanced image 

analysis to extract information from image data, regardless of its 

complexity. No matter the source and format of the image, our 

products are highly integrated, providing users in academia and 

across varied industries with a streamlined image processing and 

analysis process for enhanced efficiencies due to automation and 

user-friendliness.

Visit our website to learn more: 

https://www.arivis.com/

arivis and APEER go ZEISS
New names, new look, same outstanding performance

We are expanding the arivis software product family under the 

trusted ZEISS brand to include APEER cloud and AI solutions. We 

believe that the consolidated eco-system for scientific image 

analysis will better serve our users.  The changes to product names 

and branding will take place in phases in the upcoming year. 

Customers can continue to expect the quality and support 

excellence they are used to from the expanded ZEISS arivis 

platform.

ZEISS arivis Pro
With ZEISS arivis Pro, you can unlock the full potential of your 

scientific images. Our powerful tools help you create seamless 

analysis pipelines, effortlessly process massive datasets, and get the 

insights you need to make better decisions.

Here are some of the features of ZEISS arivis Pro:

 � Automated end-to-end image analysis pipelines, created with 

just a few clicks.

 � Multi-Dimensional image analysis is made easy with an  

easy-to-use interface.

 � Preconfigured options for common image analysis tasks.

 � Efficient handling of large quantities of data.

 � Optional VR toolkit for an even more immersive experience.

Our software is powerful, flexible, and easy to use, making it easy 

to get started with your image analysis. It is the perfect solution for 

researchers, engineers, and scientists.

https://www.arivis.com/products/pro

https://www.arivis.com/
https://www.arivis.com/products/pro
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ZEISS arivis Hub
ZEISS arivis Hub has got you covered when you want to scale up 

your image analysis. This powerful platform enables you to optimize 

your computing resources, import and organize your datasets, and 

manage your data access and identification with ease.

Key capabilities include the ability to:

 � Parallelize your computations for enhanced scalability.

 � Easily create workflows with one or multiple pipelines for  

connecting various analysis tasks into one streamlined process.

 � View your spatially resolved results directly on your raw  

datasets, saving you time and increasing cost efficiency.

Whether your images are already stored or currently being 

generated, ZEISS arivis Hub onboards them and schedules analysis 

jobs for optimized and maximized throughput.

ZEISS arivis Cloud
ZEISS arivis Cloud is the ultimate solution for researchers looking 

to enhance their image analysis capabilities. With pre-defined 

workflows and custom AI-driven tools on the cloud, you can easily 

collaborate with peers to optimize your analysis, even if you are not 

an image analysis specialist.

Key features:

 � Easy to use Deep Learning toolkit: arivis AI toolkit.

 � Export Deep Learning models to automate your image analysis.

 � Easy portability and collaboration.

 � No coding required!

Designed for biotech, pharma, materials science, electronics, and 

more.

Upgrade your image analysis capabilities with ZEISS arivis Cloud. 

Collaborate and analyze images from anywhere with ease. Get 

reproducible and reliable results faster.

https://www.arivis.com/products/hub

https://www.arivis.com/products/cloud-ai

https://www.arivis.com/products/hub
https://www.arivis.com/products/cloud-ai
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ZEN Microscopy Software
ZEN is your complete solution from sample to knowledge. Whether 

you’re a beginner or an expert, ZEN has everything you need to get 

the most out of your microscopy experiments.

ZEN is the universal user interface on every ZEISS imaging system. 

It provides intuitive tools and modules to assist you with all your 

microscopy tasks. Whether you need to:

 � Quickly and easily acquire high-quality images using smart 

automation.

 � Process images using scientifically proven algorithms.

 � Visualize big data with a GPU-powered 3D engine.

 � Analyze images using Machine Learning-based tools.

 � Correlate between light and electron microscopes to gain a 

deeper understanding of your samples.

With ZEN, you can design multi-dimensional workflows exactly the 

way you want. ZEN’s intuitive tools and modules make it easy to 

accomplish simple tasks, while still offering the flexibility to tackle 

even the most complex research experiments.

ZEISS ZEN Software Solutions
ZEISS provides end-to-end microscopy software solutions that are 

fully integrated with every imaging system from ZEISS. No matter 

the complexity of your imaging needs or application, ZEISS will find 

the hardware and software solution you need.

https://www.zeiss.com/microscopy/en/products/software/zeiss-
zen.html

ZEISS ZEN Core
ZEISS ZEN core is your ultimate software suite for connected 

microscopy from material lab to production. It offers a range 

of imaging, segmentation, analysis, and data connectivity tools 

that make it the most comprehensive solution for multi-modal 

microscopy in connected material laboratories.

With ZEN core, you get:

 � An adaptive user interface that’s easy to configure and use.

 � Advanced imaging and automated analysis tools. 

 � Data connectivity features that are designed to work 

seamlessly across all your connected devices and equipment.

ZEN core is the perfect software suite for anyone who needs 

comprehensive microscopy capabilities, from materials lab 

researchers to production teams. With ZEN core, you can take your 

microscopy experiments to the next level and get the insights you 

need to make better decisions.

https://www.zeiss.com/microscopy/en/products/software/zeiss-
zen-core.html

Visit our website to learn more: 

https://www.zeiss.com/microscopy/en/products/software/light-

microscopy-software.html

https://www.zeiss.com/microscopy/en/products/software/zeiss-zen.html
https://www.zeiss.com/microscopy/en/products/software/zeiss-zen.html
https://www.zeiss.com/microscopy/en/products/software/zeiss-zen-core.html
https://www.zeiss.com/microscopy/en/products/software/zeiss-zen-core.html
https://www.zeiss.com/microscopy/en/products/software/light-microscopy-software.html 
https://www.zeiss.com/microscopy/en/products/software/light-microscopy-software.html 
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ZEISS Labscope
ZEISS Labscope is your easy-to-use imaging app. With it you 

can connect all the microscopes in your lab or classroom to a 

digital network and display their live images simultaneously from 

anywhere in the room. Getting reproducible results faster has never 

been easier or more fun.

Here’s how Labscope can help you:

 � Effortlessly observe and share images in real-time in your 

digital network.

 � Snap images, record videos, and measure samples with a push 

of a button. Increase efficiency with dedicated features that 

are targeted at routine tasks.

 � Collaborate and teach with ease as you observe your students 

in real-time. Switch easily between microscopes in the lab and 

in class, turning each lesson into a demonstration.

ZEISS Labscope is the perfect solution for connecting and managing 

all your microscopes in one place. Say goodbye to manual juggling 

and hello to easy digital networking, fast results, and collaborative 

teaching with Labscope.

https://www.zeiss.com/microscopy/en/products/software/zeiss-
labscope.html
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